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Abstract

This paper documents a new set of stylized facts on how pricing moments depend on
product age and emphasizes how this heterogeneity is crucial for the amplification of
nominal shocks to the real economy. Exploiting information from a unique panel con-
taining billions of transactions in the U.S. consumer goods sector, we show that our
empirical findings are consistent with a narrative in which firms face demand uncer-
tainty and learn through prices. Such a mechanism of active learning from prices can
strongly influence an economy’s aggregate price level and can thus be important for
assessing the degree of monetary non-neutrality. To quantify this, we build a general
equilibrium menu cost model with active learning and exogenous entry that features
heterogeneity in pricing moments over the life cycle of products. Under this setup,
firms engage in active learning to deal with uncertainty on their demand curves. Firms
choose prices not only to maximize static profits, but also to create signals to obtain
valuable information on their demand. In the calibrated version of our model, the cu-
mulative real effects of a nominal shock are more than three times as large compared
to a standard price-setting model. The main intuition behind this result is that active
learning weakens the selection effect. Price changes are mainly determined by forces of
active learning and, hence, become more orthogonal to aggregate shocks, which reduces
the aggregate price flexibility of the economy.

JEL Codes: D4, E3, E5

Keywords: menu cost, firm learning, fixed costs, nominal shocks

∗We thank Fernando Alvarez, Erik Hurst, Francesco Lippi, Robert Shimer, and Joseph Vavra for their
advice and support. We are grateful to Treb Allen, Bong Geun Choi, Steve Davis, Guido Menzio, Elisa
Giannone, Mikhail Golosov, Veronica Guerrieri, Greg Kaplan, Oleksiy Kryvtsov, Anthony Landry, Munseob
Lee, Thomas Lubik, Robert Lucas Jr., Virgiliu Midrigan, Sara Moreira, Giuseppe Moscarini, Jón Steinsson,
Nancy Stokey, Harald Uhlig, Gianluca Violante, and Alex Wolman. David Argente gratefully acknowledges
the hospitality of the Bank of Mexico and the Einaudi Institute for Economics and Finance where part of
this paper was completed. The views expressed herein are those of the authors and not necessarily those of
the Federal Reserve Bank of Richmond or the Federal Reserve System.

†Corresponding author. Email: dargente@psu.edu. Address: 403 Kern Building, University Park, PA
16801.

mailto:dargente05@gmail.com


1 Introduction

How large is the transmission of nominal shocks to the real economy? This remains an

important question in macroeconomics because of the disconnect that exists between micro

price-setting models, which typically predict small real effects (e.g., Golosov and Lucas,

2007), and macro estimates where the variation in output to nominal shocks is sizable at

short horizons (e.g., Shapiro and Watson, 1988).1 This paper seeks to reconcile these views by

focusing on the age-dependence of several pricing moments. We argue that this heterogeneity

is crucial for understanding the amplification of nominal shocks to the real economy.

To come to this conclusion, we document new stylized facts on the age-dependence of

pricing moments and interpret them through the lens of a structural price-setting model

with active learning. Using a panel containing billions of transactions in the U.S. consumer

good sector, we show that the empirical evidence supports a mechanism of active learning

with prices. We argue that this narrative rationalizes our set of stylized facts comprehensively.

Then, we build a price-setting model with active learning to quantify the impact of a nominal

shock on the real economy. We find that the cumulative real effects of a nominal shock are

more than three times as large compared to a standard menu cost model. The main intuition

behind this result is that active learning weakens the selection effect: firms have less of a

need to adjust their prices in response to nominal shocks because they are more prone to

adjust their prices due to idiosyncratic reasons (i.e. active learning) instead. This raises an

economy’s non-neutrality.2

We start by using a large panel of U.S. products to document new facts about the distri-

bution of both the duration and size of price changes over the product’s life cycle; a dimension

so far ignored by traditional price-setting models. We show that pricing moments, such as

frequency and absolute size, strongly depend on the age of a product: entering products

change their prices twice as often as the average product and the average size of these adjust-

ments is 50 percent larger compared to the average price change.3 Furthermore, large price

1Shapiro and Watson (1988) refer to these shocks as “demand” shocks, but we follow the convention in
Lucas (2003), as done by Nakamura and Steinsson (2009), that these shocks capture more than just monetary
shocks. In fact, he argues that these shocks also capture temporary non-neutrality due to real shocks. While
Smets and Wouters (2007) show that monetary shocks on their own account for a relatively modest fraction
of business cycle variations in output, the broader interpretation of nominal shocks can explain “a significant
fraction of the short-run forecast variance in output.” Other examples of this sort include Justiniano et al.
(2010) and Justiniano et al. (2013).

2The term “selection” was introduced by Golosov and Lucas (2007) to indicate that firms that change
prices after a nominal shock are those whose prices are in greatest need of adjustment. Given that the
distribution of the size of price changes fully encodes this type of selection, a wide range of papers in recent
years have taken advantage of micro data to match the size distribution of price changes, such as Nakamura
and Steinsson (2008), Midrigan (2011), Vavra (2014) and Karadi and Reiff (2019).

3The patterns at exit are quite different, as the frequency and absolute size of regular price adjustments
stay mostly constant before exit. Nonetheless, the frequency and depth of sales increase significantly at exit.
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changes occur disproportionately more often in the early stage of a product’s life cycle.

Previous studies from a select number of industries show that the introduction of a new

product is associated with a significant amount of demand uncertainty from the firm’s per-

spective. Empirical evidence from these few case studies indicate that firms vary their prices

to obtain information about their demand curves.4 We argue that our stylized facts provide

evidence from a broad line of product categories to support such a hypothesis. Although we

cannot rule out the possibility that a combination of alternative mechanisms can account for

our stylized facts, the active learning mechanism can simultaneously rationalize them and

do so in a parsimonious way. In addition, the active learning narrative generates a unique

prediction on the age-dependence of pricing moments. Under the assumption that more novel

products bring more demand uncertainty with them, the negative relation between a prod-

uct’s pricing moments and its age should be more pronounced for more novel products. To

confirm this relation, we construct a newness index that measures the novelty of a product.

This novelty reflects observed characteristics such as, for example, brand, volume or packag-

ing (as opposed to product age). We indeed find that more novel entering products adjust

their prices more often and by larger amounts. Also, we exploit variation across space and the

timing of product launches within retailers to find that retailers carry information obtained

during the first launch forward to any subsequent launch of the same product. As a result,

a framework where firms engage in active learning is a good starting point for rationalizing

standard and new moments of the price change distribution.

Our empirical findings are the first in the price-setting literature that focus on hetero-

geneity in product age. While previous contributions have found heterogeneity in pricing

moments along other dimensions and demonstrated its importance for nominal shock prop-

agation (e.g., Nakamura and Steinsson, 2009), none of them have focused on a product’s

life cycle. Importantly, this is a source of heterogeneity within sectors. Our facts emphasize

that this type of heterogeneity is a salient feature of the data and provide insights on the

underlying reason why firms adjust prices.5

We argue that the age distribution of products at a given point in time is crucial for

assessing the propagation of a nominal shock to the real economy. To do so, we build a

general equilibrium menu cost model in the spirit of Golosov and Lucas (2007) to rationalize

our stylized facts and to quantify the magnitude of this propagation. Based on our empir-

These findings are described in more detail in Online Appendix D.
4Gaur and Fisher (2005), for example, surveys 32 U.S. retailers and finds that 90 percent conduct price

experiments to learn about their demand.
5The theoretical literature on price-setting shows that different types of price changes have substantially

different macroeconomic implications. For example, the way the timing of price changes is modeled, is crucial
for its macroeconomic implications; be it endogenous (e.g., Caplin and Spulber, 1987) or exogenous (e.g.,
Calvo, 1983).
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ical findings, we let firms engage in active learning pricing strategies to deal with demand

uncertainty. To model active learning, we follow the insights by Mirman et al. (1993) and

Bachmann and Moscarini (2012).6 In particular, the latter contribution is useful for our

approach in modeling active learning because it highlights how to do this in a concise way.

In our framework, a firm is uncertain about its demand elasticity upon its product’s entry.

Firm-specific demand shocks prevent a firm from directly inferring its type: a firm that sets

a relatively high price and observes a low amount of sales cannot distinguish between the

fact that its product has a high elasticity of substitution or that the realization of its demand

shock was simply low.

To deal with this uncertainty, firms engage in a Bayesian learning process in which their

beliefs about their elasticity can be updated after observing the amount of quantity they have

sold.7 These sold quantities are the firm’s only source of noisy signals about its elasticity. The

key insight of active learning is that prices not only affect a firm’s level of current profits, but

they also impact the future set of signals a firm receives. Changes in its price alter the speed

at which the firm learns about its elasticity of demand. Thus, the firm balances its incentives

between maximizing static profits and altering its future information set in the most efficient

way. Active learning thus features a trade-off between “current control” and “estimation”.

As a firm ages and learns more about its elasticity, its incentives for active learning decline

and the dispersion of price changes decreases. This is consistent with evidence from other

markets such as the newly deregulated market of frequency response services in the United

Kingdom, a service required to keep electricity running smoothly. Doraszelski et al. (2018)

find that in response to uncertainty, firms experiment with their bids by adjusting them

more frequently and by larger amounts and, over time, the market experienced an important

reduction in the range of bids; adjustments of bids became less frequent and smaller.

In our framework, the age-dependence of pricing moments is completely generated by

learning from the supply side. Consumers have standard preferences over a composite of

two baskets of goods facing no frictions, hence we abstract from demand-side narratives

(e.g., learning by customers or customer base). While we acknowledge the limitations of the

demand side of our framework, we argue that our model of active learning is a parsimonious

way of capturing salient facts on the age-dependence of pricing moments. Furthermore, we

6The focus of the latter paper is very different as they study how negative first moment aggregate shocks
induce risky behavior. In their model, when firms observe a string of poor sales, they become pessimistic
about their own market power and contemplate exit. At that point, the returns to price experimentation
increase as firms “gamble for resurrection.”

7Our work is related to the literature in optimal control problems with active learning that has been studied
in many areas of economics since Prescott (1972). Its application to the theory of imperfect competition
consists of relaxing the assumption that the monopolist knows the demand curve it faces. The first application
of this concept can be found in Rothschild (1974). More recent examples can be found in Wieland (2000b),
Willems (2017), and Ilut et al. (2020).
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provide unique evidence from the newness of products and staggered product introduction

across space and time that supports our mechanism of active learning by firms.8

We calibrate our framework to standard pricing moments and our newly found set of

stylized facts regarding the product’s life cycle, and quantify the cumulative real output

effect of a nominal spending shock. Our findings indicate that the output response is 3 to 3.4

times larger than in the benchmark model with no demand uncertainty and accounts for 7 to

11 percent of the U.S. business cycle, which is about half of the measured variation predicted

by Shapiro and Watson (1988).

The reasoning behind this result is twofold. The incentives for active learning dampen

selection in the size of price changes; that is, pricing with active learning motives pushes

firms away from the margin of price adjustment and lessens the mass of firms that adjust

their prices due to a nominal shock. Since firms have an additional motive to change prices,

they become less sensitive to changes in their marginal costs, which is the primary source of

price gaps in most menu cost models.

In addition, the concept of a product’s life cycle introduces an additional form of cross-

sectional heterogeneity in the frequency of price adjustment. In an environment with active

learning incentives combined with menu costs, uncertain firms are willing to adjust their

prices more often to acquire information on their demand. These firms will most likely

adjust their price several times before firms with sharper beliefs adjust their price once after

a nominal shock. However, all those price changes by more uncertain firms, after the one in

response to the nominal shock, have no effect on real output because these firms have already

adjusted to the shock. Given that the model is calibrated to match the average frequency of

price changes, firms that are more certain about their type significantly delay the adjustment

of the aggregate price level after a nominal shock. These firms tend to be older and have a

lower frequency of price adjustment on average. As a result, this delay reduces selection in

the timing of price changes.9 Importantly, the lower selection effect in the size and timing of

price changes arises endogenously in our model.10

8Importantly, we perform extensive robustness tests in section 7 showing that a customer base model with
deep habits (Ravn et al., 2006) is not consistent with our stylized facts. It is worthwhile to note, however,
that this model abstracts from strategic customer responses through the extensive margin as featured in
recent macroeconomic models of the customer base (for example, Kleshchelski and Vincent, 2009; Drozd and
Nosal, 2012; Gourio and Rudanko, 2014; Paciello et al., 2019, Roldan and Gilbukh, 2021).

9Recent contributions highlighting the importance of selection in the timing of price changes are Kiley
(2002), Nakamura and Steinsson (2009), Sheedy (2010), Alvarez et al. (2011) and Carvalho and Schwartzman
(2015).

10Although this logic is similar to the one described in Alvarez et al. (2016a) in relation to the response of
real output to nominal shocks, our framework does not fit the class of models for which the kurtosis of the
distribution of price changes is a sufficient statistic. This is because price gaps in our setup are endogenous
since prices and beliefs are jointly determined. Then, conditional on adjustment, firms do not fully close their
price gaps. We discuss this matter more extensively in Section 5.
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The remainder of this paper is organized as follows. In Section 2, we present the data and

the main empirical findings. Section 3 discusses a simple two-period setup to highlight the

intuition behind a firm’s pricing strategy engaged in active learning. Moreover, we present a

quantitative, general equilibrium menu cost model that is able to explain our stylized facts.

Section 4 calibrates our quantitative framework and evaluates it along a set of targeted and

untargeted pricing moments. In Section 5, we discuss our results on the propagation of

nominal shocks and compare our results with other models used in the literature. Section

6 provides additional empirical evidence in favor of the active learning mechanism. Section

7 discusses alternative mechanisms that can rationalize our empirical findings and extends

our quantitative framework along several dimensions to ensure that our results on monetary

non-neutrality are robust. Section 8 concludes. The appendix provides additional empirical

findings and details on extensions of the model.

2 Stylized Facts on the Life Cycle of US Products

In this section, we use a large scanner data set to show a new set of stylized facts on pricing

moments over a product’s life cycle in the U.S. economy. We begin by showing the importance

of new products; both in terms of their count and revenues relative to the aggregate. Then,

we develop a set of facts that show that pricing moments at the product level are considerably

different across a product’s age; in particular near entry. At entry, the frequency of regular

price changes, the absolute size of regular price adjustments, and the cross-sectional standard

deviation of regular price changes are higher. All of these moments approximately settle

to their respective averages as the product matures. Furthermore, the fraction of large

price changes, defined as those changes larger than two standard deviations after prices

are demeaned in a given category and store, is considerably larger at the beginning of the

product’s life cycle.

2.1 Data

The life cycle patterns of products’ prices have typically not been studied much as the

requirements on the data are quite stringent. Doing so requires a large panel of products with

information about their entry date and prices at a high sampling frequency. The Consumer

Price Index (CPI) Research Data, for example, is only available at a monthly frequency and

the age of products is unknown. All Entry-Level Items (ELIs) are added to the CPI basket

long after their first appearance in the national market.

For this reason, we rely on the IRI Marketing data set which provides more than ten
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years of data at the store-product-week level. The data is generated by point-of-sale systems:

each retailer reports the total dollar value of its weekly sales and total units sold for each

product. A product is identified by its Universal Product Code (UPC), a code consisting

of 12 numerical digits that is uniquely assigned to each specific product and represents the

finest level of disaggregation at the product level.

The data contains approximately 2.4 billion transactions from January 2001 to December

2011 which represents roughly 15 percent of household spending in the Consumer Expenditure

Survey (CEX). Our sample contains approximately 170,000 products and 3,000 distinct stores

across 43 metropolitan areas (MSA). The data covers 31 product categories and includes

detailed information about each product such as its brand, volume, color, flavor, and size.11

Given the properties of the data, we can identify the first appearance of a UPC in a

certain store by using the retail and product identifiers. We assume that if a UPC changes,

some noticeable characteristic of the product has also changed. This is because it is rare that

a meaningful quality change occurs without a change to its UPC. Considering each UPC as a

product is, in fact, a broad definition since it includes classically innovative products, which

are “breakthrough” products that deliver innovation to an existing or new product category;

line extension products, which are new products within an already existing category; and

temporary products, which have a short life cycle and are typically seasonal. We find that

product line extensions, such as flavor/form upgrades or novelty and seasonal items, are much

more prevalent than the introduction of new brands.

Using UPC and retailer identifiers, we are able to determine at what week and store each

product first appears. We define entering products as those that enter the U.S. market after

January 2002. Our data starts from January 2001, thus an entering product is one that has

no observable transactions in any store across the U.S. for at least one year. This assumption

avoids the inclusion of products with a left-censored age. In addition, we only consider

products that entered the market before the first week of 2007. We impose this restriction

for two reasons. First, the prices of products born during downturns can have substantially

different patterns than those of products born in normal times.12 More importantly, IRI

Marketing undertook a substantial reorganization of its product categories and expanded

their scope at the beginning of 2007. Thus, the data after this specific date might include

11The product categories include Beer, Carbonated Beverages, Coffee, Cold Cereal, Deodorant, Dia-
pers, Facial Tissue, Photography Supplies, Frankfurters, Frozen Dinners, Frozen Pizza, Household Cleaners,
Cigarettes, Mustard & Ketchup, Mayonnaise, Laundry Detergent, Margarine & Butter, Milk, Paper Towels,
Peanut Butter, Razors, Blades, Salty Snacks, Shampoo, Soup, Spaghetti Sauce, Sugar Substitutes, Toilet
Tissue, Toothbrushes, Toothpaste, and Yogurt. The data set is discussed in more detail in Bronnenberg et
al. (2008). See also Coibion et al. (2015), Alvarez et al. (2016a), Chevalier and Kashyap (2019), Stroebel and
Vavra (2019), and Gagnon and López-Salido (2020) for applications of the data to related questions.

12Moreira (2016), for example, provides evidence that the average business size across cohorts is significantly
affected by aggregate economic conditions at inception.
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some entering products that might not correspond to actual product introductions.13 By

restricting our sample of entering products between January 2002 and January 2007, we

avoid this reclassification bias.

Further, in order to minimize concerns of potential measurement error in the calculation

of product-level entry and exit, our baseline sample excludes private-label products and only

considers products that last at least two years in the market. We exclude private-label items

from the main analysis because all private-label UPCs have the same brand identification so

that the identity of the retailer cannot be recovered from the labeling information.14 Also,

we exclude short-lived products in order to minimize the problem that some newly-entering

products get assigned UPCs of previously existing products as noted by Chevalier et al.

(2003). Last, we drop promotional items or products with very little revenue to minimize

biases due to measurement error.15

2.2 The Importance of New Products

Broda and Weinstein (2010) emphasize the importance of entering and exiting products for

the aggregate performance of the U.S. economy through aggregate price indices. Argente et

al. (2018) show that product turnover in the U.S. is substantial as one third of all products

are either created or destroyed in a given year and more than 20 percent of U.S. products are

aged less than one year. In this subsection, we sketch an identical picture in our sample to

highlight the importance of entering products. We begin by using information on the number

of new products, exiting products, and the total number of products in each category k ∈ C
to define aggregate entry and exit rates at the product level:

n(t, s) =

∑
k∈C Nk(t, s)∑
k∈C Tk(t)

x(t, s) =

∑
k∈C Xk(t, s)∑
k∈C Tk(s)

13More specifically, IRI undertook the following actions: i) reorganization of private-label items (i.e. organic
private labels are broken out for some categories), ii) dropping of UPCs that have not moved in past years,
iii) collapse of UPCs into a main UPC to avoid clutter (i.e. products that came to a store as part of a special
promotional code rather than with a standard UPC code), iv) reorganization of categories (i.e. a category
might have increased in scope and as a consequence experienced an increase in items), and v) addition of UPCs
that were introduced at the beginning of each stub. All of these are consistent with changes in the number
of entering and exiting UPCs due to changes in the product stub rather than new product introductions or
products being phased out.

14A “private label” product is one that a retailer gets from a third party (who also produces it), but sells
under its own brand name.

15These restrictions are only a small part of our sample (approximately 2.5 percent). In the end, our results
are robust to not excluding private-label items, short-lived products and promotional items.
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where Nk(t, s), Xk(t, s), and Tk(t) are the number of entering products, exiting products,

and total products in period t relative to period s for category k. We define the entry rate

in period t relative to s as the number of new products in period t relative to period s as a

share of the total number of products with strictly positive sales in period t. A new product

is one that records at least one transaction in any store in period t and that was not sold in

any store in period s. We also report entry and exit rates that are weighted by revenue.

Using a scanner data set collected at the store level offers the advantage of observing, for

the categories available, the entire universe of products for which a transaction is recorded

in a given week. For this reason, we can distinguish between products entering the market

and products being launched at each store, where our unit of observation is every UPC-store

pair. We find a substantial degree of entry of products at both levels.

Table I reports the entry and exit rates for the case in which t and s are one and five years

apart. It shows that 14 percent of the UPCs in the market and on average 27 percent of the

products in each store entered in the last year. Approximately 45 percent of the products in

the market entered in the last five years accounting for 29 percent of total expenditures.

Table I: Product Entry and Exit

UPC UPC UPC×Store UPC×Store
5-Year 1-Year 5-year 1-year

Entry 0.45 0.14 0.66 0.27
Entry (W) 0.29 0.07 0.47 0.15
Exit 0.42 0.13 0.61 0.25
Exit (W) 0.08 0.01 0.39 0.10

Note: The table shows the statistics of the entry and exit rates for one and five year intervals. Entry and exit rates denoted

with “W” are weighted by revenues. Columns (1) and (2) show the statistics at the UPC level whereas columns (3) and (4)

show these at the UPC-store level.

At the store level, 66 percent of all products sold were first introduced by the store in the

last five years and they account for about half of the total revenue of the store. Although

the exit rate is very similar to the entry rate of products, it is lower than entry whenever

weighted by revenue. This lower rate means that consumers spend more on new products

than on products that are about to exit. The rate of product turnover indicates that at any

point in time, there is a large amount of products being launched or being phased out.

Table II shows that the median duration of a product in a given store is slightly above

three years.16 The large rates of revenue-weighted entry and revenue-weighted exit, both at

16Since our data set ends the last week of 2011 and we are considering products that entered the last
week of 2006 at the latest, right censoring is only an issue for products that last more than 261 weeks in the
market.
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the store and at the market level, along with a short product life cycle indicate that the

pricing of entering products are relevant for determining the dynamics of aggregate prices.17

Table II: Distribution of Duration by UPC × Store

(1) (2) (3) (4)
Unweighted Revenue Weighted

Weeks since Observations Weeks since Observations
Entry since Entry Entry since Entry

1st percentile 1.0 1.0 12.4 7.7
25th percentile 37.4 16.3 108.4 73.5
50th percentile 96.3 47.1 183.7 131.8
75th percentile 209.5 122.0 280.6 208.3
99th percentile 450.7 369.7 466.3 405.1
Mean 134.0 83.1 198.9 148.9
Std. Dev. 118.9 90.6 117.9 100.0

Note: The table shows the statistics of the distribution of durations of a UPC-store pair. In columns (1) and (2), we compute the

duration of each UPC-store pair and aggregate them to the category level using equal weights. Categories are further aggregated

using equal weights. In columns (3) and (4), we aggregate to the category level using revenue weights and aggregate across

categories using equal weights. Weeks since entry refers to the number of weeks elapsed since the product was first observed.

Observations since entry refers to the number of times a product is observed in our data set. A product is observed only if it

records a transaction in a given week and store.

2.3 Empirical Strategy

To study the price dynamics of products along their life cycle, we begin by computing the

average retail price in a given week:

Pmcjst =
salesmcjst

unitsmcjst

where m, c, j, s, and t index markets (at the MSA level), product categories, UPCs, stores

and time, respectively. A considerable advantage of the IRI Marketing data set is that it

provides information on whether and when a product was on sale in a certain store (the

so-called “sales flag”) that is absent in other scanner data sets. Since our goal is to study

the speed of price adjustment following a nominal shock, we focus on studying the life cycle

patterns of regular price changes given that retailers’ use of sales/promotions in our data do

not vary with macroeconomic conditions.18 Nonetheless, the main stylized facts discussed

17We observe large rates of entry and exit (revenue-weighted) at the brand level as well. On average, 16
percent of brands are either created or destroyed in a given year which is consistent with Broda and Weinstein
(2010) who find that most creation does not come from new sizes or new flavors.

18Using the same data set, Coibion et al. (2015) find that retailers’ use of sales does not vary with the
unemployment rate. Anderson et al. (2017) argue that sales prices are governed by sticky plans and they are
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below are robust to the inclusion of sales in the analysis.

We adopt the same conventions as Coibion et al. (2015) to distinguish between regular

price changes and sales. A regular price change is defined as any change in price that is larger

than one cent or 1 percent in absolute value. For prices larger than 5 dollars in value, this

cut-off is 0.5 percent. To identify sales, we use the sales flag provided in the data, but our

results are robust to applying the sales filter introduced by Nakamura and Steinsson (2008).19

The size of a price change is calculated as the log difference between the price levels in the

current and the previous week. Thus, we get:

∆Pmcjst = ln(Pmcjst)− ln(Pmcjst−1)

Let a ∈ {1, . . . , A} denote the number of weeks since entry (which we will define as the age

of the product) where a = 1 denotes entry. To assess the movements of the pricing moments

over the life cycle of a product, we adopt the following age-cohort-period model:

Yjsct = α +
A∑
a=1

ϕa ·Da
js + θjs + τt + γc + εjsct (1)

where j, s, t and c are the UPC, store, time period and cohort c = t− a the product belongs

to respectively. Yjstc is the variable of interest (e.g., the price change indicator or the size

of the price change). Da
js is a dummy variable that takes the value of one if the product

is in its ath week since entry. θjs captures fixed effects at the UPC-store level whereas τt

and γc denote time and cohort fixed effects respectively. We are interested in the regression

coefficients {ϕa}Aa=1 which capture age heterogeneity of the pricing moment of interest.

In our empirical specification, it is not possible to identify the heterogeneous effects of age

conditional on a product’s cohort and time period due to perfect collinearity. To resolve this,

we follow Heckman and Robb (1985) who argue that “age, cohort, and time effects are proxy

variables for underlying unobserved variables which are not themselves linearly dependent.”

We estimate equation 1 under the assumption that trends appear only in cohort effects. Time

planned in advance according to a “trade promotion calendar.” They also find that retailers do not respond
to macroeconomics shocks by adjusting the size or frequency of sales. Figure A5 in Appendix A shows that
neither the frequency or the size of sales/promotions are larger at entry.

19Under this approach, a good is on sale if a price is reduced but returns to its same previous level within
four weeks. Coibion et al. (2015) use two approaches to identify a price spell. The first treats missing values
as interrupting price spells. In the second approach, missing values do not interrupt price spells if the price
is the same before and after the periods with missing values. Since the incidence of sales from applying
these two approaches does not significantly differ from the one identified by the sales flag provided in the IRI
Marketing data set, we use the union of sales flags obtained from applying these two approaches and the flag
provided in the IRI Marketing data to identify the incidence of sales. Our results are not sensitive to any of
these choices.
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fixed effects are replaced with the seasonally-adjusted unemployment rate at the MSA level

to control for local cyclical economic variation.20

2.4 Pricing Moments over the Life Cycle of US Products

We first use regression specification 1 with a price change indicator as the dependent variable.

Figure 1 plots the frequency of regular price changes over the life cycle of a product.

Figure 1: Frequency of Price Adjustment Since Entry

Note: The graph plots the average weekly frequency of price adjustments of entering products. The y-axis denotes the probability

that a product adjusts its price in a given week whereas the x-axis denotes the number of weeks the product has been observed in

the data after entry. The graph plots the coefficients for the age fixed effects in equation 1 where we use the regular price change

indicator as the dependent variable. Regression specification 1 is computed by controlling for UPC-store and time fixed effects

while the local unemployment rate proxies for cohort fixed effects. The calculation uses approximately 130 million observations

and 2.5 million UPC-store pairs. Standard errors are clustered at the store level.

The dots represent the estimates of the age fixed effects {ϕa}Aa=1 associated with specification

1.21 Newer products clearly see their prices being changed more often. This allows us to

20Some examples of studies that use this proxy approach are Deaton and Paxson (1994), Gourinchas
and Parker (2002), De Nardi et al. (2010), and Aguiar and Hurst (2013). We have also applied another
normalization in which trends only appear in the period effects instead. In this case, the time fixed effects
are included in the estimation of equation 1 and we use the local unemployment rate to represent cohort fixed
effects. The idea behind this is that products introduced during (local) downturns might perform differently
in terms of their pricing dynamics over the life cycle. This is reminiscent of Moreira (2016) who shows that
the size and performance of businesses over their life cycle is heavily influenced by the state of the economy
at times of business inception. Our baseline results are not sensitive to the chosen normalization.

21Specifically, we plot α̂+ ϕ̂a for every a ∈ {1, . . . , A = 50}. α̂ is the unconditional average of the frequency
of price changes of a product that has been in the market for 50 weeks.

11



state our first stylized fact.

Empirical fact 1. The average frequency of price adjustment declines with the product’s

age. The decline is most pronounced at the early stage of the product’s life cycle as entering

products change their prices twice as often as the average product.

The frequency of price adjustment is almost 4 percentage points higher at entry and takes

approximately 20 weeks to settle to its average value of 5 percent. The magnitude of this

significantly higher frequency is best reflected in the expected amount of time it takes for

a product to change its price.22 If we maintain the frequency of adjustment at entry, then

a price should change approximately every 12 weeks. This is twice as often relative to the

average of 24 weeks that we observe in the data.

Figure 2: Absolute Value of Price Changes Since Entry

Note: The graph plots the average absolute size of price adjustments of entering products. The y-axis is the absolute value of

the log price change in that week whereas the x-axis denotes the number of weeks since the product entered. The graph plots

the coefficients for the age fixed effects in equation 1 where we use the absolute value of the log price change as the dependent

variable. Regression specification 1 is computed controlling for UPC-store, time fixed effects while the local unemployment rate

proxies for cohort fixed effects. The calculation uses approximately 5.8 million price changes and 2.5 million UPC-store pairs.

Standard errors are clustered at the store level.

In order to study whether the magnitude of these price adjustments also changes over the

life cycle of the product we use a similar approach but instead use the absolute size of price

changes as the dependent variable. Figure 2 depicts our results.

22This is equal to −1/ln(1− f) where f denotes the frequency of price adjustment.
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During the first few months, the absolute value of price changes is much larger and almost

5 percentage points higher than the average which amounts to approximately 9 percent.

Further, the dispersion of price changes as measured by the weekly cross-sectional standard

deviation is almost 40 percent larger during the first four months after entry with respect

to its level 12 months after the product is launched.23 Importantly, this fact holds for both

price increases and decreases.24 This leads to our second stylized fact.

Empirical fact 2. The absolute size of price adjustment declines monotonically with

the product’s age. The decline is most pronounced at the early stage of the product’s life

cycle as the average absolute size of entering products is almost twice as large as the average

change.

Our baseline specification uses a non-parametric specification for the age of a product to

allow for non-linearities of pricing moments in a product’s age. However, our results stay

robust when allowing for a richer set of time fixed effects (e.g., UPC-time effects or store-time

effects).25

Thus, we conclude that firms not only price more often but also in a more extreme fashion

during the early stages of their products’ life cycles. Importantly, the standard class of menu

cost models is not capable of capturing the salient age-dependent features we observe in the

data.26

Next, we investigate whether very large price changes are more or less frequent as products

get older. To do so, we follow the approach by Alvarez et al. (2016a) to minimize complica-

tions regarding heterogeneity across products and stores. We define “cells” at the UPC-store

level, say (j, s), and standardize each price change at this level through zjst ≡ (∆pjst−µjs)/σjs
where µjs and σjs are the mean and standard deviation of price changes in cell (j, s) across

time.

Figure 3 shows the distribution of regular price changes larger than two standard devi-

23Our findings are consistent with those in Alvarez et al. (2015) who find that the hazard rates of price
changes depend on the age of the product once unobserved heterogeneity is taken into account. Figure 7
decomposes these price changes into increases and decreases. Qualitatively, we find similar results for both
the frequency of price increases and decreases.

24See figure 7 in Section 4. Figure A4 in Appendix A shows that both the frequency and size of regular
price changes stay mostly constant at exit. Figure A4 shows that there is an increase in the frequency of
sales during the last weeks of the life cycle of the product.

25These results are displayed in figure A1 in Appendix A. Furthermore, tables A2 and A3 in Appendix A
show the same findings for each individual category in our data. Thus, our main results are not driven by a
specific product category. Our conclusions remain unchanged whenever we impose linearity in the age of a
product. These results are summarized in table A1.

26To see this, consider the benchmark model of Golosov and Lucas (2007) with exogenous entry and
exit. In this setting, the frequency of price adjustment rises with age if the entry price is chosen optimally.
Furthermore, this benchmark makes no predictions on the absolute size of price changes over a product’s life
cycle.
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ations as a function of the age of the product. We observe a sizeable share of large price

changes close to entry particularly during the first 20 weeks. About 40 percent of the price

changes larger than two standard deviations of the product life cycle occur during these

weeks. The distribution of large price changes is roughly uniform after that.

Figure 3: Fraction of Price Changes Larger than Two Standard Deviations

Note: The figure shows the fraction of price changes larger than two standard deviations from the mean in a given category and

store as a function of the age of the product. The products considered are those that last at least two years in the market.

These results do not rely on the standardization of prices nor on our definition of “large”

price changes.27 Lastly, this pattern holds for both positive and negative large price changes;

just like our previous set of stylized facts.28 As a result, we summarize our third stylized fact

as follows.

Empirical fact 3. Large price changes mostly occur in the early stages of a product’s

life cycle. 40 percent of large price changes occur during the first 20 weeks of a product’s life

cycle whereas a quarter of them are already observed in the first three weeks of a product’s

entry.

This finding implies that age-dependent pricing moments are not limited to “normally sized”

price changes. This is important as our third empirical fact relates to the use of idiosyncratic

shocks from fat-tailed distributions in menu cost models to generate large price changes.

Previous work has assumed that these shocks arrive at a constant rate. This assumption

27Figure A8 in Appendix A shows our robustness exercise for non-standardized price changes larger than
30 percent.

28This is displayed in figure A7 in Appendix A.
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includes the family of Poisson shocks used in Midrigan (2011). However, the prevalence of

large price changes in the beginning of the life cycle contradicts this assumption. Fat-tailed

shocks have substantial implications on the degree of non-neutrality as well. Their presence

reduces the selection effect after a monetary shock as the mass of firms responding to it is

smaller. This will prove to be important for understanding what economic mechanism could

rationalize our set of stylized facts.

3 A General Equilibrium Model of Active Learning

In the following, we present a model of active learning that allows us to structurally interpret

our empirical findings of the previous section. Our framework is a discrete-time menu cost

model in the tradition of Golosov and Lucas (2007). The crucial assumption differentiating

it from the former model is that firms face uncertainty on their demand curves. A firm does

not know its elasticity of demand (or type), but forms beliefs and learns about its type over

time. We adopt an approach in which firms actively learn about their type: firms can adjust

their prices to change the speed at which its beliefs get updated. As a result, a firm faces an

intertemporal trade-off between maximizing its static profits and gaining more information

about its type when choosing its price. Hence, information at the firm level is endogenously

generated. The learning mechanics of our framework are similar to those in Bachmann and

Moscarini (2012).

We start with a simple two-period setup of active learning to highlight the aforementioned

trade-off and how this impacts a firm’s pricing strategy. Then, we present a quantitative,

general equilibrium model that can rationalize our empirical facts and allows us to explore

the aggregate implications of active learning in a menu cost model.

3.1 A Two-Period Model of Active Learning

We start with a two-period setup to highlight the economic intuition behind pricing under

active learning motives. Firms are characterized by a type σ ∈ {σ1, σ2} that determines their

profitability. In particular, the inverse demand curve is given by q = D(p;σ) + ε where ε is

a zero mean random variable drawn from a density f(·) that is continuous and satisfies the

monotone likelihood ratio property (MLRP). A firm does not know its type σ but has some

initial belief λ0 over it. A firm cannot deduce after the first period what its type is due to

the random variable ε, but it can update its belief through Bayes’ rule.

We assume that firms have market power and can determine their own prices. After a

firm sets its price p, it can observe how much quantity it sold q and update its beliefs. Thus,
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this means that a firm’s informative signal (i.e., its quantity sold) directly depends upon its

control variable (i.e., its price). As a result, the firm’s posterior belief is an explicit function

of its price p. These posterior beliefs follow Bayes’ rule and are denoted by λ′ = B(λ, p, q).

Conditional on some price p and type σ, profits are given by Π(p;σ). We assume that Π(·;σ)
is concave for all types σ which is a fairly weak assumption. In the end, we can write a firm’s

dynamic problem as:

v(λ0) = max
p∈P

M(p;λ0) + β · Eε
[
λ0 · V (B(λ0, p,D(p;σ1) + ε))

+ (1− λ0) · V (B(λ0, p,D(p;σ2) + ε))
]

where

M(p;λ0) = λ0Π(p;σ1) + (1− λ0)Π(p;σ2)

V (λ′) = max
p′∈P

M(p′;λ′)

The firm’s value V (λ′) in the last period is straightforward: a firm maximizes its expected,

static or myopic profits M(p;λ′) given its posterior belief λ′ in the second period. Let the

maximizer of myopic profits be defined as the myopic price pM(λ) ≡ max
p′∈P

λΠ(p′;σ1) + (1 −

λ)Π(p′;σ2). The myopic price is unique for each belief λ since Π(·;σ) was assumed to be

concave.

In the first period however, a firm internalizes the fact that the price it sets also affects its

posterior belief. Thus, a firm must balance its incentives between obtaining higher myopic

profits and sharpening its posterior beliefs to increase its continuation value. The optimal

price that strikes a balance between these two forces, given a prior belief λ0, is denoted by

p∗(λ0). This price is the maximizer associated with the value function v(λ0).

As a result, we say that a firm actively learns with its price at the belief λ0 if it deviates

from the myopic price. This deviation |p∗(λ0)− pM(λ0)| reflects the firm’s incentive to gain

information for increasing the speed of learning at the expense of its current period profits.

However, it is not clear ex ante that any price will lead to more information for the firm.

In the following, we describe what prices are more informative from the firm’s point of view

and formally establish what conditions are sufficient for active learning.

Incentives for active learning. Even though a firm’s type σ is uncertain, it is aware

that it can only take two values. As a result, there are only two possible expected demand

curves: D(p;σ1) and D(p;σ2). We define the confounding price p̂ as that price at which

the demand curves intersect in expectation, i.e. D(p̂;σ1) = D(p̂;σ2). To learn about its

own type, a firm’s strategy is to induce variation in its quantity at a price that is as far as
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possible from the confounding price. This is because at the confounding price the firm does

not obtain any relevant information in expectation. In fact, the posterior belief is equal to

its prior at the confounding price, i.e. we get that B(λ0, p̂, D(p̂;σ) + ε) = λ0 for any ε, σ.

Therefore, an uncertain firm that wants to learn about its demand curve, can do so by

“separating” the two possible demand curves from each other. We formalize this intuition

by relying on the insights of Aghion et al. (1991) and Mirman et al. (1993). The latter

provides a set of sufficient conditions in order for a monopolistic firm to experiment. First,

information must be valuable which is reflected by the strict convexity of V (·). A relatively

large literature has established that a firm’s motive for active learning can be captured by the

convexity of its continuation value. In other words, the more convex is the function V (·) the
more valuable information becomes. In our specific setup, it is straightforward to show that

this is the case.29 Second, prices must be able to affect the informativeness of quantities. In a

similar setup to our two-period model, Mirman et al. (1993) show that the latter condition is

satisfied whenever the slopes of the demand curves are not equal to each other at the myopic

price, i.e. we have dD(p,σ1)
dp

∣∣
p=pM (λ0)

̸= dD(p,σ2)
dp

∣∣
p=pM (λ0)

. This condition can be satisfied by

assuming, for example, iso-elastic demand curves.

Recall however that a firm’s pricing decision is not purely determined by active learning

motives. A firm also cares about its myopic profits in the first period. Then, the opti-

mal pricing policy strikes a balance between a concave myopic profit function and a convex

continuation value. This is also known as the “current control-estimation” trade-off in the

experimentation literature. This emphasizes the importance of the convexity of V (·): a more

convex continuation value stresses the importance of the value of information and steers the

firm away from a concave profit function which reflects static, profit maximization incentives

that are standard in most menu cost models. In order to shed some light on the active

learning motives, below we provide a numerical example to illustrate how a firm’s pricing

incentives are influenced by the value of information.

Numerical example. In this example, we parameterize the profit function through loglin-

ear (or CES) demand curves and a constant marginal cost of production. Furthermore, we

draw ε from a normal distribution with mean zero and variance σ2
ε . For simplicity, we set

the prior belief at λ0 = λ̂. For convenience, we denote V(·;λ0) ≡ Eε
[
λ0 ·V (B(λ0, ·, D(·;σ1)+

ε))+ (1−λ0) ·V (B(λ0, ·, D(·;σ2)+ ε))]. Figure 4 plots the firm’s myopic profits M, the con-

tinuation value V , and the total payoff (which is simply the sum of the former and discounted

latter) as a function of the firm’s set price. The dotted lines at the extremes of the figure

depict the optimal static prices with perfect information which satisfy p∗i = max
p≥0

Π(p;σi)

29We prove this formally in Online Appendix E.1.
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for i ∈ {1, 2}. By construction, myopic profits are maximized at pM(λ0). The concavity

of M(p;λ0) illustrates the costs of active learning as prices far away from pM(λ0) represent

profit losses in the first period.

Figure 4: Numerical Example of the Two-Period Model

Note: The figure denotes static profits M(p;λ0), continuation value βV(p;λ0) and total payoff M(p;λ0) + βV(p;λ0) at λ0 = λ̂.

The dotted purple lines represent the optimal prices p∗2 and p∗1 under complete information. pM (λ0) represents the myopic

policy whereas p∗(λ0) represents the pricing policy under active learning.

Figure 4 shows that V(·;λ0) is convex which follows from the convexity of V (·). It also shows

that its minimum lies at the confounding price p̂. The reason is that a firm’s sales become

completely uninformative at the confounding price. In this case, small deviations from the

confounding price lead to large gains. Thus, the benefits from active learning are strongly

related to the convexity of V(·;λ0). For example, prior beliefs closer to zero and one lead to

less convex continuation values. The reason is because the marginal benefit of information

decreases for firms that are more certain about their type.

A firm bases its pricing strategy by maximizing its total payoff. In this example, the

total payoff is double-peaked and its global maximum is at p∗(λ0).
30 The figure shows that

the global maximum lies in the interior of P = [p∗2, p
∗
1] and, most importantly, the optimal

pricing strategy deviates from its myopic counterpart.31

30In general, the sum of concave and convex functions can have multiple peaks, however the results of our
baseline framework always have either a single or a double-peaked continuation value.

31In Online Appendix E.4, we derive a set of sufficient conditions to guarantee that p∗(λ0) ∈ [p∗2, p
∗
1] for all

λ0. Online Appendix E.5 shows the different learning regimes, as consistent with the findings by Keller and
Rady (1999), that could arise in our setup and describes the case with menu costs.

18



In the following, we bring these pricing mechanics of active learning to a quantitative,

general equilibrium menu cost model. In Section 4, we show that such a model is well suited

in matching our empirical results and as such provides a good justification for interpreting

our facts through the lens of a pricing framework with active learning.

3.2 Quantitative Model

Households. Households in the economy maximize their expected, discounted utility over

aggregate consumption Ct and labor supply Lt that is characterized by:

E0

∞∑
t=0

βt
[
C1−θ
t − 1

1− θ
− ω

L1+χ
t

1 + χ

]

where Et denotes the expectations operator conditional on information available to the house-

hold at time t. Households have CRRA preferences over an aggregate consumption good with

risk aversion parameter θ and the level of disutility from working is denoted by ω. The inverse

Frisch elasticity is given by χ and households discount by a factor β per period.

The aggregate consumption good Ct is a Cobb-Douglas composite of two Dixit-Stiglitz

indices of differentiated goods:

Ct = Cη
1tC

1−η
2t with Cit =

[∫
k∈Ji

(
αit(k)

) 1
σi
(
Ci
t(k)

)σi−1
σi dk

] σi
σi−1

There are two continua of differentiated goods consisting of perishable consumption units or

services. A good is indexed by a pair (i, k). The first index i ∈ {1, 2} denotes the good’s basket
whereas its variety within a basket i is denoted by k ∈ Ji. Varieties within the first basket

are hard to substitute with each other whereas other varieties are mutually substitutable

with a relatively high elasticity of substitution, thus we set σ2 > σ1.

Each good is assumed to be produced by a single monopolistically competitive producer.32

Each good is identified through the index pair (i, k). We assume that i is time-invariant.

Consumer’s good-specific preference shocks αit(k) are drawn every period, independently over

time, and within and across group types. Draws are the same for all consumers. Households’

decisions are taken after observing these taste shocks.

Within each period, households choose how much to consume of each differentiated good

to maximize the level of the aggregate consumption good Ct. For a given level of spending St,

we obtain the following downward-sloping demand curve for each differentiated good (i, k):

32We will use the term “firm”, “good” and “product” interchangeably since there are no multi-product
firms in our setup.
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Ci
t(k) = αit(k)

(
P i
t (k)

Pit

)−σi ηiSt
Pit

(2)

where we denote the income shares for each basket by η1 = η and η2 = 1− η. pit(k) denotes

the price of a good (i, k) in period t. By construction, the price index for composite good

Cit is given by:

Pit =

(∫
k∈Ji

αit(k)
(
P i
t (k)

)1−σi dk)1/1−σi
(3)

These price indices satisfy the following equalities P1tC1t+P2tC2t = PtCt = St. The aggregate

price level Pt is such that PtCt is the minimum amount of expenditure necessary to obtain

Ct units of the aggregate consumption good. We assumed that the realization of taste shocks

are independent across groups. Since there is a continuum of goods within each basket i, we

can use a law of large numbers.33 This implies:

Pit =

(∫
k∈Ji

P i
t (k)

1−σidk

)1/1−σi

where the law of large numbers gives us that
∫
αit(k)dk

p→ E(αit(k)) = 1 since we normalize

the expected value of the taste shocks to be equal to unity.

Households have access to a complete set of Arrow-Debreu securities.34 Therefore, the

period t budget constraint is characterized by:

PtCt + Et (qt,t+1Bt+1) ≤ Bt +WtLt +
∑
i

∫
k∈Ji

Πi
t(k)dk

where Wt denotes the nominal wage rate and Πi
t(k) is the profit that households receive from

owning the firm producing good (i, k). Bt+1 denotes the state-contingent payoffs in period

t + 1 from purchasing assets in period t. These claims are priced in period t by the unique

(stochastic) discount factor qt,t+1. The first-order conditions of a household’s intertemporal

maximization problem are then:

33In particular, we use the Glivenko-Cantelli theorem. The argument is identical to the one in Bachmann
and Moscarini (2012).

34Our main results in Sections 4 and 5 are based on a stationary environment, hence there is no need for
households to trade these Arrow-Debreu securities in this case. However, we present our model in a general
setting since we discuss the implementation of aggregate shocks in Appendix C.3 and Online Appendix F.
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βT−tEt
(
C−θ
T

PT

1

qt,T

)
=
C−θ
t

Pt
(4)

ωLχt C
θ
t =

Wt

Pt
(5)

These equations describe the determination of asset prices and labor supply.

Firms. In contrast to most state-dependent pricing models, firms in our framework set

prices under incomplete information. In the following, we incorporate the active learning

mechanics of Section 3.1 into a richer, quantitative environment.35 At any point in time t, a

firm (i, k) can observe its total amount of sales Qi
t(k) after setting some price P i

t (k). Due to

the Dixit-Stiglitz specification above, these sales satisfy the following loglinear form:

log
(
Qi
t(k)

)
= −σilog(P i

t (k)) + log(St) + (σi − 1)log(Pit) + log(ηi) + log(αit(k))

where we define log(αit(k)) = εit(k). If the time index t is temporarily dropped and a mo-

nopolistically competitive firm producing good (i, k) is considered, then with some abuse of

notation, we can rewrite the above sales equation as:

q = −σip+ s+ µi + εk (6)

From the firm’s point of view, there is no longer a one-to-one mapping between quantities and

prices as it cannot observe taste shocks εk and it does not know its elasticity of substitution.

Whenever a firm sets a price p, demand q can be high for two reasons: (1) the variety belongs

to a basket within which substitution is hard, or (2) the realization of the taste shock εk is

high.

A firm does observe the amount of sold quantities q of its product. It can use this

information to learn about its elasticity of demand and update its type. As a result, a firm

might want to deviate from the static profit maximizing price to learn more about the price

elasticity of its corresponding basket.

Taste shocks are specific to each variety, but these are unobserved by the firm. Further-

more, a firm is unaware of its type i but uses observed sales as a informative signal to learn

about its type. As a result, its pricing policy is independent of (i, k) and we can drop this

index without loss of generality for determining the optimal pricing strategy. Our setup im-

poses the following timing on the firm’s pricing decisions and the consumer’s realized demand

shock for each period.

35Note that the intuition behind active learning in the two-period model of Section 3.1 is identical to that
in the quantitative framework.
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1. A firm decides on its price p before the realization of the demand shock εk.

2. The shock εk is realized and households decide to consume q = −σip+ s+ µi + εk

conditional on the set price p.

3. The firm is contractually obliged to supply Q = exp(q) and forms its posterior beliefs.

Let λ denote the firm’s prior belief that its type is of a low elasticity of demand σ1 and

f(·) the probability distribution function of εk. Whenever a firm observes log sales q and

aggregate income s, and sets some price p, it can update its prior belief to the posterior λ′

according to Bayes’ rule:

λ′ = B(λ, p, q, s)

=

[
1 +

1− λ

λ

f(q + σ2p− µ2 − s)

f(q + σ1p− µ1 − s)

]−1

The firm rationally anticipates that the price it sets will affect the informative quantity it

will observe the period after: prices set in period t affect a firm’s future beliefs. As a result,

the firm’s motives are not solely rooted in the maximization of its static profits because a

firm’s pricing strategy can increase the value of its sales’ informativeness. In the remainder

of this paper, we assume that log demand shocks are normally distributed with mean zero

and variance σ2
ε . Then, a firm’s posterior belief, conditional on its true type being i, is equal

to:

bi(λ, p, ε) = B(λ, p,−σip+ s+ µi + ε, s)

=

(
1 +

1− λ

λ
exp

(
1
2
(−1)1(i=2)

[(
ε

σε

)2

−
(
p · ∆σ

σε
− ∆µ

σε
+

ε

σε

)2
]))−1

where ∆σ ≡ σ2 − σ1 > 0 and ∆µ ≡ µ1 − µ2. The expression above shows that the speed

of learning or the rate at which posterior beliefs change is heavily influenced by the firm’s

pricing decision. In fact, the expression indicates that posterior beliefs are more responsive

to prices whenever the signal-to-noise ratio ∆σ/σε is high. Further, it can be seen that beliefs

are self-reinforcing at the confounding price p̂ = ∆µ/∆σ as we have bi(λ, p̂, ε) = λ for all ε

and i.36

Pricing. A firm has access to a linear production technology in labor. Its production

function is given by:

yit(k) = zit(k)ℓ
i
t(k)

36This is formally shown in Online Appendix E.2.
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where yit(k) denotes the output of some firm (i, k) in period t. Similarly, ℓit(k) is the quantity

of labor the firm uses for production purposes in period t. Its idiosyncratic productivity is

given by zit(k). Labor is supplied competitively at the nominal rate Wt. In addition, we

assume that log productivity follows a mean-reverting process:

log(zit+1(k)) = ρ · log(zit(k)) + σζζ
i
t+1(k) where ζ

i
t+1(k) ∼ N(0, 1)

A firm’s ex-interim expected profits conditional on type i, price p, and idiosyncratic produc-

tivity z is equal to:

Πi
t(p; z) = Et

[(
p− Wt

z

)
αit(k)

(
p

Pit

)−σi ηiSt
Pit

]

=

(
p− Wt

z

)(
p

Pit

)−σi ηiSt
Pit

where the last equality follows from our previous normalization. Myopic profits are then

formed by taking expectations with respect to a firm’s current prior belief λt. Furthermore,

firms are required to pay a fixed cost of ψ in units of labor to adjust their nominal price.

Static profits are then equal to:

λtΠ
1
t (p; z) + (1− λt)Π

2
t (p; z)− ψWt · 1(p ̸= pit−1(k))

where 1(·) is an indicator function equal to unity whenever its argument holds true. Given

these constraints, a firm chooses a path of prices {pit(k)}t≥0 to maximize its expected, dis-

counted profits:

E

(
∞∑
t=0

qt,t+1Πt(P
i
t (k); z

i
t(k))

∣∣∣∣F0

)

where the expectation is with respect to the path of future beliefs, demand, and productivity

shocks. Its information set available at time 0 is denoted by the filtration F0. Any firm

makes its pricing decisions while taking aggregate prices, spending, and the wage rate as

given. These variables are determined in general equilibrium. In the following, we focus on

a stationary recursive equilibrium in which nominal aggregate spending trends at a constant

rate and satisfies log(St+1) = log(St) + π. Thus, there is no aggregate uncertainty and

aggregate variables are constant under this equilibrium. Profits are then discounted at the

rate β.

Entering firms start out with a common prior λ0 and some initial productivity draw. Only

upon entering, firms can adjust their price without incurring the menu cost. In our model,
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firms have substantial incentives to learn their type at the beginning of their life cycle and

do so by making large and frequent price adjustments. As the product matures the gains

to obtaining additional information are extremely small and are not sufficient to offset the

menu cost. Given that the frequency and absolute size of price changes at the later stages of

the product life cycle are far from negligible, we capture the incentives for price changes at

these later stages through standard state-contingent channels: idiosyncratic cost shocks and

allowing for positive inflation levels.

Thus, a firm’s dynamic programming problem is summarized by the following Bellman

equation:

v(λ, z, p−1) = max
{
vA(λ, z), vNA(λ, z, p−1)

}
where the value of adjusting and not adjusting are respectively given by:

vA(λ, z) = max
p≥0

λΠ1(p; z) + (1− λ)λΠ2(p; z)− ψW
P

+ βλEε,z′
[
v
(
b1(λ, log(

p
1+π

), ε
)
, z′, p

1+π
)

∣∣∣∣z]
+ β(1− λ)Eε,z′

[
v
(
b2(λ, log(

p
1+π

), ε
)
, z′, p

1+π
)

∣∣∣∣z]
vNA(λ, z, p−1) = λΠ1(p−1; z) + (1− λ)λΠ2(p−1; z)

+ βλEε,z′
[
v
(
b1(λ, log(

p−1

1+π
), ε
)
, z′, p−1

1+π
)
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+ β(1− λ)Eε,z′

[
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(
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), ε
)
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)

∣∣∣∣z]

We define the optimal pricing policy p∗(λ, z) as the maximizer associated with the value

function vA(λ, z). In a menu cost model without active learning, a price-setting firm only

considers its static profits and its effect on the continuation value through the fact that

changing prices is costly.37 However, sold quantities are observable and informative from the

firm’s point of view. Thus, a firm can also affect its posterior beliefs through its price. This

is highlighted by the posterior belief functions b1 and b2 in the firm’s continuation value. As

a result, the policy function p∗(λ, z) reflects the optimal deviation from the myopic policy

function that summarizes the balance between sacrificing static profits and increasing the

rate at which it learns about its type.38

37This class of frameworks include standard price-setting models such as Barro (1972), Dixit (1991), Golosov
and Lucas (2007) and Alvarez and Lippi (2014) for example.

38Note that our framework is fundamentally different from most price-setting models with learning. In
the framework by Baley and Blanco (2019), a firm is faced with uncertainty about its productivity. As a
result, the problem can be formulated as a Kalman-Bucy filtering problem. Information however evolves
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Stationary recursive equilibrium. We close the model by clearing the labor market

and imposing an exogenous structure for entry and exit. In particular, we assume that every

firm starts out with the prior λ0 ∈ (0, 1) in the beginning of its life cycle, thus firms are ex

ante homogeneous in this dimension. However, different realizations of the idiosyncratic taste

and productivity shocks lead to ex-post heterogeneity of a firm’s beliefs in the cross-section.

Note that firms are also heterogeneous in their level of productivity. This dispersion in firms’

beliefs and their idiosyncratic productivity is captured by the cross-sectional distribution

φi(λ, z) for firms of type i.

A firm’s pricing policy is independent from i and k. To obtain price consistency in the

aggregate, we must have:

Pi =

(∫
(λ,z)

p∗(λ, z)1−σidφi(λ, z)

) 1
1−σi

(7)

The market clearing condition for goods is explicitly incorporated in the firm’s problem, thus

the only remaining market to clear is the factor or labor market. Given the linear production

technology, labor demand is simply characterized by:

Ld =
∑
i

∫
k∈Ji

Ci(k)

zi(k)
dk

We target labor supply L to be equal to one third, then labor market clearing implies Ld = L.

We focus on a stationary equilibrium in which any dying firm, which occurs at the rate

δ, is immediately replaced by a new firm. Nature assigns a new firm to have an elasticity

σ = σ1 with probability λ0. This is common knowledge for all firms in the economy. Hence, it

naturally follows that all firms have a prior belief at entry equal to λ0 as well. This is identical

to Bachmann and Moscarini (2012). We simplify the analysis by normalizing the measure of

firms to unity in which a fraction γ1 of firms belong to basket J1. This immediately implies

that the measure of σ2-type firms is 1− γ1.

Our assumptions on entry then implies that γ1 = λ0 is necessary for a balanced measure

of in- and out-flows at the product level. Whenever nominal total spending grows determin-

istically at the rate π, there is no aggregate uncertainty. If W is the economy’s numéraire,

then we can define a stationary recursive equilibrium accordingly.

exogenously: in their baseline case, these information flows are driven by Brownian motions and a Poisson
shock. In contrast, our model considers firms that can explicitly affect their information set. As a result, the
flow of information becomes an endogenous object.
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Definition. A stationary recursive equilibrium with numéraire W = 1 is a tuple (P1, P2, S)

and a pair of invariant distributions (φ1(λ, z), φ2(λ, z)) in which real variables are constant

such that: (1) consumers maximize their utility, (2) firms adopt optimal pricing policies, (3)

market for goods and labor clear, (4) aggregate prices are consistently aggregated and (5)

firms exit and enter at the rate δ, and the fraction of type 1 entering firms is λ0.

4 Quantitative Performance

In this section, we calibrate our general equilibrium model of active learning and evaluate its

quantitative performance. We discuss in detail how well our model is able to hit the moments

of our calibration. For external validation, we also assess the model’s performance vis-à-vis

other micro moments that were not part of the calibration. The details of our computational

procedure can be found in Appendix B.1.

4.1 Calibration

The IRI Marketing data set is defined at the weekly level, so we set the model period at one

week. There are four parameters that are externally calibrated, i.e. β, π, δ and σε. We do

so because most of these parameters have direct, empirical counterparts. Since the model

features a weekly frequency, the discount factor is set at β = 0.961/52 which reflects an annual

interest rate of around 3.8 percent. Note that the discount factor β already incorporates the

exogenous, weekly exit rate of δ = 0.4 percent which comes directly from the IRI Marketing

data at the UPC-store level.39 We assume an annual inflation rate of 2 percent, thus we set

π = (1.02)1/52 − 1 = 0.038 percent as the weekly rate of inflation.

The standard deviation of taste shocks σε is disciplined through the variation of sold

quantities conditional on no price change in the IRI Marketing data. To be more precise,

we regress quantities on prices and a rich set of non-parametric controls, and obtain its

residuals.40 For each store, we then calculate the standard deviation (over time) of these

residuals. These standard deviations are then averaged across stores within each product

category using store-level revenues as weights. Finally, we aggregate across product categories

using equal weights. In the end, we calculate a value of 40 percent which is similar to the

number reported in Eichenbaum et al. (2011).41

39We have verified that our results on monetary non-neutrality in Section 5 are not sensitive to variations
in entry and exit rates across product categories as observed in our data.

40These controls include fixed effects are the UPC-store and time level. Our results are similar when we
include fixed effects at the UPC-store, UPC-time and store-time level instead (see Appendix A.2).

41Our findings are similar whenever we use no (revenue) weights in the first (second) stage of averaging.
The revenue-weighted standard deviations of residuals do not vary much across product categories. Our
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In the remainder of our analysis, we follow Golosov and Lucas (2007) by assuming log

utility for consumption and linear disutility in labor (i.e., θ = 1 and χ = 0). The rest

of the parameters are calibrated internally to match various micro-data moments. There

are eight remaining parameters: the two elasticities of substitution σ1 and σ2, the prior

belief at entry λ0, the basket division of income η, the fixed menu cost ψ, the persistence and

standard deviation of idiosyncratic productivity ρ and σζ and the disutility of labor ω. These

parameters are calibrated jointly and are selected to hit eight moments from the data. They

include moments that are typically used in the menu cost literature, such as the frequency,

fraction of positive price changes and size of price changes. The disutility of labor ω is chosen

such that aggregate labor supply equals one-third as in Golosov and Lucas (2007) and Vavra

(2014). We also target the frequency and absolute size of price changes at different points of

time in a product’s life cycle to generate age dependence in pricing moments.42

Even though our moments are jointly calibrated, implying that no parameter identifies

exactly one specific moment of the data, we can still provide some intuition on which param-

eters are more informative for a certain set of calibration targets. As we showed in Section

2.4, pricing moments converge to their long-term averages after about 20 weeks. From this

point onward, the data seems roughly consistent with a standard menu cost model in the

spirit of Golosov and Lucas (2007). As a result, the menu cost ψ and idiosyncratic produc-

tivity parameters (ρ, σζ) are most informative for the long-run average pricing moments of

the whole sample. This is because firms learn about their type and, hence, their incentives

to actively learn decrease over time as well.

In our framework, we generate age dependence in pricing moments through an active

learning mechanism. Intuitively, the steepness of these pricing moments (as a function of a

product’s age) should be informed by those parameters that govern the speed of learning in

our model. As emphasized in Section 3.1, this is most accurately captured by the signal-to-

noise ratio ∆σ/σε = (σ2 − σ1)/σε and the common prior belief at entry λ0. Whenever the

signal-to-noise ratio is high, active learning is effective and firms learn about their types fast.

Learning is more important whenever there is some level of uncertainty at the firm level (i.e.,

prior beliefs are not close to the extreme values of zero or unity).

estimates for σε vary from 0.38 to 0.43 depending on the set of non-parametric controls. We set σε = 0.4 as a
reflection of the median estimate. We performed some sensitivity analysis with respect to the parameter σε
and found that our results on monetary non-neutrality in Section 5 do not vary much when σε is allowed to
vary within a relatively wide range between 0.3 and 0.5. The cross-product category standard deviation of
demand shocks is about 0.05. Hence, our range covers two standard deviations below and above our baseline
estimate of 0.4. Furthermore, the standard deviation of taste shocks in the data is approximately constant
over the product life cycle. Therefore, the size and variation of demand shocks does not vary over the life
cycle in our model.

42In particular, we focus on weeks 2 and 10 of the product life cycle, but our results are robust to picking
other weeks in the early stages of a product’s life cycle.
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Moreover, the common prior λ0 also guides the model on the sign of price changes. To see

why this is the case, recall we follow Bachmann and Moscarini (2012) in that λ0 is also equal

to the fraction of low elasticity firms. Whenever λ0 is low, then there are also few firms with

low elasticities. Hence, the majority of firms have high elasticities with prior beliefs that are

aligned with their true type. On the other hand, a small fraction of firms has a low elasticity

(who wish to set high prices in the long run), but their prior beliefs are aligned with high

elasticities instead. In our environment with decreasing-gains learning, a firm will eventually

discover its type (conditional on survival). This implies that if learning occurs relatively

fast, as implied by the life cycle patterns of pricing moments in the data, then this set of low

elasticity firms will change their prices aggressively upward in order to learn about their type.

It is the pricing behavior of this fraction of firms that will dominate the dynamics on the

sign of price changes. This logic for low values of λ0 gets reinforced whenever η is relatively

low as well. Whenever η is low, true static profits for low elasticity firms are actually much

lower than according to their initial beliefs. This implies it is more costly for these firms to

not learn about their type and, hence, these firms have incentives to learn about their type

faster.43

Table III shows the model’s best parameters in terms of fitting the selected moments, and

table IV displays the resulting moments from the framework compared to the data.44

Table III: Internally Calibrated Values of the Model’s Parameters

Description Parameter Value
Elasticity of Substitution 1 σ1 4.6
Elasticity of Substitution 2 σ2 15.2
Prior Belief at Entry λ0 0.25
Basket Division of Income η 0.15
Fixed Cost ψ 0.03
Productivity Persistence ρ 0.58
Productivity Standard Deviation σς 0.04
Disutility of Labor ω 2.98

The productivity parameters (ρ, σζ) are in line with previous estimates in the menu cost liter-

ature. The specification for the menu cost ψ implies that the cost conditional on adjustment

relative to revenues is around 2 percent, which is in line with the estimates in Zbaracki et al.

(2004). The value of σ1 is in the range of values typically used in the menu cost literature.

43A sensitivity analysis of our calibration can be found in Appendix B.2.
44The model’s parameters θ = (σ1, σ2, η, λ0, ψ, ρ, σζ) are chosen to minimize the criterion function

L (x,D; θ) = 1
8

∑8
i=1

∣∣xi(θ)−Di

xi(θ)

∣∣ where D = {Di}8i=1 and x(θ) = {xi(θ)}8i=1 denote the sets of targeted

moments in the data and those generated by our quantitative framework, respectively. To ensure that the
criterion function was minimized, we have tried different initializations for our calibration.
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The model requires a somewhat large σ2 to induce a sufficient amount of active learning.

Nonetheless, σ2 is within the range of estimates in Broda and Weinstein (2010) who compute

elasticities of substitution for a variety of products using data similar to ours.

Table IV: Moments of Price Change Distribution

Moment Data Model with Learning Full Info
(1) (2) (3)

Frequency Week 2 0.09 0.09 0.002
Frequency Week 10 0.06 0.06 0.05
Absolute Size Week 2 0.17 0.17 0.05
Absolute Size Week 10 0.11 0.11 0.07
Frequency 0.05 0.05 0.05
Fraction Up 0.66 0.56 0.58
Average Size 0.02 0.003 0.01

Not Targeted
Std. of Price Changes 0.11 0.11 0.07
75th Pct Size Price Changes 0.10 0.11 0.07
90th Pct Size Price Changes 0.18 0.13 0.08

4.2 Calibrated Moments

Table IV shows that our framework is able to capture pricing moments that are independent

of a product’s age. The model matches the overall frequency of adjustment and fraction of

increasing price changes closely. This is not surprising since our quantitative framework is

an extension of a standard menu cost model.

More importantly, our framework is able to endogenously generate age dependence in

pricing moments. Table IV indicates that we are able to match selected weeks of the frequency

and absolute size of price changes. Our framework does not only capture the early stages of

the product life cycle’s pricing moments but also pricing moments along the entire life cycle.

This is illustrated in figure 5 shown below.
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Figure 5: Frequency and Absolute Size of Price Changes at Entry (Model vs Data)

(a) Frequency of Price Changes (b) Absolute Size of Adjustments

Note: The figure shows the simulation results of the quantitative model and compares them with their data counterpart. We

simulate a panel of 1,000 firms over 1,000 periods and compute both the predicted frequency of price adjustments and the

absolute size of price changes over the life cycle of a product. The results for the frequency of price changes are shown in panel

(a) and those for the absolute size of price changes are shown in panel (b).

For comparison, column (3) of table IV displays the performance of our framework in a perfect

information setting, i.e. active learning motives are absent but firms are heterogeneous in

their elasticties. The frequency of price adjustment is slightly increasing over the product

life cycle and there is no age dependence in the absolute size of price adjustment; both

are characteristics that are counterfactual. In this case, since firms choose their entry price

optimally, in the presence of menu costs and without learning incentives, they are less likely

to adjust their prices during the early stages of their life cycles.

4.3 Untargeted Moments

We also evaluate the performance of our quantitative framework relative to data moments not

targeted in our calibration. To emphasize the consistency of the active learning mechanism

with our data, we validate our framework externally along several dimensions of the price

change distribution. Our model is consistent with the prevalence of large price changes in the

early stages of the product life cycle, as emphasized in our third stylized fact. This is illus-

trated in figure 6. Active learning generates this feature endogenously. Intuitively, large price

changes generate valuable information for younger products. Our calibration also matches

the standard deviation of price changes and price changes in the 75th percentile in absolute

value without explicitly targeting them. The model, however, somewhat underpredicts the

prevalence of price changes in the 90th percentile of the size distribution.
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Figure 6: Fraction of Price Changes Larger than Two Standard Deviations (Model vs Data)

(a) Data (b) Model

Note: Panel (a) shows the fraction of price changes larger than two standard deviations from the mean in a given category and

store as a function of the age of the product. The products considered are those that last at least two years in the market. Panel

(b) shows the results of the quantitative model after simulating a panel of 1,000 firms over 1,000 periods.

Figure 7: Frequency and Size of Price Increases and Decreases at Entry (Model vs. Data)

(a) Frequency (b) Size

Note: Panel (a) shows the frequency of increases and decreases in the data and those generated by the model. Panel (b) shows

the size of price increases and decreases in the data, and those generated by the model. We simulate a panel of 1,000 firms over

1,000 periods and compute both the predicted frequencies of adjustment and the sizes of price changes over the life cycle of a

product.

The model is also consistent with the frequency of positive and negative price changes over

a product’s life cycle. Panel (a) of figure 7 shows that the model is able to capture the full

age profile for price changes in both directions. Panel (b) shows that, in terms of the life

cycle for the size of price changes, the model replicates the empirical patterns; particularly

for positive price changes which induce the most curvature as a function of a product’s age.

Overall, our calibrated model is able to capture salient features of the data on the sign of
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price changes.

Lastly, we focus on the hazard rate of price changes. Alvarez et al. (2021), using the same

data set as ours, estimate a decreasing hazard for regular price changes after correcting for

unobserved heterogeneity.45 Our framework of active learning also generates a hazard rate

that is downward-sloping with a small hump at short durations; see figure 8.

Figure 8: Hazard of Price Changes

Note: The figure shows the hazard of price changes under the baseline calibration of the model. We simulate a panel of 1,000

firms over 1,000 periods and compute the hazard of price changes using the Kaplan-Meier method.

This is not obvious at first glance, and it is the result of several opposing forces. The

presence of a menu cost typically results in upward-sloping hazard rates since firms are

less likely to adjust after they reset their prices. On the other hand, as firms learn, the

probability of consecutive price changes is larger at entry since firms can leverage newly-

obtained information causing a new adjustment. This force, in addition to the fact that the

variance of idiosyncratic shocks is large relative to the rate of inflation, contributes to the

declining nature of the hazard at long horizons as in the data. This is relevant since Carvalho

and Schwartzman (2015) point out that, all else equal, declining hazards of price changes are

consistent with higher monetary non-neutrality.

45We explore and discuss the performance of our quantitative framework relative to other untargeted
moments in Appendix B.3.
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5 Propagation of Nominal Shocks

We previously showed that a quantitative model of active learning is able to hit a set of

standard pricing moments and can generate age dependence in pricing moments as consistent

with our data. This does not only allow us to provide a structural interpretation of our

stylized facts on the age dependence of pricing moments, but it also disciplines our framework

which is necessary to run counterfactual experiments. In particular, we focus on assessing

an economy’s level of monetary non-neutrality.

To do so, we perform a counterfactual experiment in which log nominal output increases by

a size that is comparable to a one week doubling of the nominal output growth rate. That is,

the economy’s nominal output growth rate is subjected to an unexpected, one-time shock after

which it grows again according to the rate in the stationary equilibrium. This experiment

follows the one in Vavra (2014) closely. In the following, we will compare the results of

our active learning framework relative to a benchmark with perfect information. Our focus

lies on the role of age-dependent pricing moments which are generated through an active

learning mechanism in our setup. To investigate the importance of active learning, therefore,

the proper benchmark is the perfect information setting with heterogeneous elasticities. The

latter is calibrated to the same set of moments as in Section 4.1.

In the following, we will focus on the cumulutive effects on real output after a monetary

shock. In other words, our measure for monetary non-neutrality is defined by the cumulative

area under the output impulse response function (IRF). We do so for two reasons. First,

the efficacy of monetary policy is not always displayed on impact.46 Second, a large body

of papers in the menu cost literature evaluates and compares the level of monetary non-

neutrality of different models along this dimension.

The results are displayed in figure 9 below. Quantitatively, the cumulative effects on real

output are 3-3.5 times larger under active learning than in the model with full information.47

On impact, approximately 62 percent of the nominal shock goes into output. In a baseline

menu cost model with full information, this value is around 57 percent. This implies that,

on impact, the real effects of a nominal shock due to active learning increase by about 9

percent.48 Importantly, the half-life of the real output response more than doubles with

46See, for example, the discussion in Appendix E of Alvarez et al. (2020). Moreover, in continuous-
time models, Alvarez et al. (2016b) show that the impact effect is exactly zero in time-dependent models.
Furthermore, monetary shocks have no first-order effects on impact in state-dependent models whenever
these monetary shocks are small and idiosyncratic productivity follows a diffusion process.

47The cumulative area under the IRF in the full information model is approximately one-sixth of that in
the Calvo model.

48To put these results into perspective and compare with other studies, consider the framework by Vavra
(2014) who highlights the importance of time-varying volatility for monetary non-neutrality. He shows that
60.7 percent of the nominal shock goes into output at the 90th percentile of the volatility distribution whereas

33



respect to that of the Golosov-Lucas model with heterogeneous firms.

Figure 9: Real Output Response to Nominal Shock

Note: The figure shows the response of log real output to an increase in the nominal output growth rate of size 0.00038. The

output response is shown in the graph as a percentage of the nominal shock. The blue line depicts the output response in the

setup of Golosov and Lucas (2007) with two different types of firms (i.e., σ1 and σ2), and the red line is the response in a

price-setting model with active learning. All models are calibrated to match the same moments and feature the same fraction

of firms of each type.

We can also compare our results to other benchmarks in the literature. In our baseline setup

with firms producing only one good (i.e., n = 1), no fat-tailed shocks and no random menu

costs, our model with active learning has cumulative effects on real output that are about

half of that in a Calvo (1983) framework. This magnitude is comparable to the multi-product

setup in Alvarez and Lippi (2014) with firms having n = ∞ products in their portfolio. Our

results also compare well to a single-product Golosov-Lucas model with random menu costs

(also known as the “CalvoPlus” specification) where the fraction of free price adjustments is

about 85 percent.49

To put our results in perspective, recall that Shapiro and Watson (1988) attribute 28

percent of the variation in output at short horizons to what they called “demand” shocks.

We follow Lucas (2003) in interpreting them as “nominal” shocks. A model with active

learning alone can account for close to a third of this variation; that is, our model generates

it increases to 70.1 percent at the 10th percentile.
49The cumulative effects on real output in our benchmark model with the addition of random menu costs

(which are added to generate small price changes) are as large as in the Golosov-Lucas model with a fraction
of free price adjustments of 90 percent. We calibrate the fraction of free adjustments to match the fraction
of small price changes defined as |dp| < 1

2mean(|dp|) which in the data is approximately 40 percent.
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fluctuations of real output that can account for roughly 7-11 percent of the U.S. business

cycle.

Our experiment indicates that active learning is important in order to understand the

impact of monetary policy. The intuition behind this result can be explained through the

selection effect, where firms adjusting their prices after an aggregate shock are exactly those

whose prices display the largest misalignment. Golosov and Lucas (2007) is an extreme

example when it comes to selection since price changes in the steady state equilibrium are

concentrated at the adjustment barriers. In our framework, the desire to actively learn

through prices pushes firms away from the margin of adjustment: price changes are more

orthogonal to the nominal shock. This lowers the mass of firms at the original bounds of

inaction and, therefore, substantially reduces selection in size. This intuition is reflected in

the size of the variance of price changes in our model, which is larger than in the baseline

model and is not explicitly targeted in our calibration.

This is not the only type of selection that is reduced in our framework. Actively learning

firms have vastly higher frequencies of price changes. These firms will most likely adjust

their price several times before firms with sharper beliefs after a nominal shock. However,

all price changes after the first one made by firms actively learning have no consequence on

real output because these firms have already adjusted to the shock. Recall that firms with

sharper posterior beliefs have, on average, a lower frequency of price adjustment. Given

that the model is calibrated to match the average frequency of price changes, the previous

observation implies that the adjustment of the aggregate price level after a nominal shock is

significantly delayed. In other words: a higher level of cross-sectional heterogeneity in the

duration of price spells reduces selection in the timing of price changes after an unanticipated

monetary shock (see Alvarez et al., 2011; Carvalho and Schwartzman, 2015).50 As a result,

the coefficient of variation of the duration of price spells is 45 to 50 percent larger than in the

full information benchmark. Previous work highlights the importance of heterogeneity across

sectors. Our model is different in that active learning produces heterogeneity in the frequency

of price changes within sectors because the joint determination of prices and beliefs generates

heterogeneity in the age of each product. This heterogeneity matters for the propagation of

nominal shocks since the cumulative real output effect of a nominal spending shock depends

on the joint distribution for price gaps and beliefs.

Alvarez et al. (2016a) point out that the kurtosis of the price change distribution captures

both of these types of selection in a broad class of state- and time-dependent models. As a

50Nakamura and Steinsson (2009) illustrate this concept within the context of a simple Calvo model. In
that framework, the degree of monetary-non-neutrality is convex in the frequency of price changes across
sectors. A straightforward argument based on Jensen’s inequality then implies that heterogeneity in the
cross-sectional distribution of the frequency of price changes will amplify monetary non-neutrality.
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result, it can be interpreted as a sufficient statistic for the degree of monetary non-neutrality

in an economy. It is worth noting that our framework is not nested within this broad class

of models. A crucial assumption in their encompassing framework is that a firm’s price

gap evolves exogenously. Under this assumption, firms close their gaps to a common point

(i.e., zero) and this allows for a characterization involving the kurtosis of the price change

distribution. In our setup, price gaps evolve endogenously because prices and beliefs are

jointly determined.51 Also, firms do not close their price gap conditional on adjustment

whenever this price gap is the difference between a firm’s current price relative to its full

information (or myopic) price.52 As emphasized in our simplified model in Section 3.1, firms

trade off static profits with obtaining more information and sharpening their posterior beliefs

implying that prices are not equal to their static optima.53

6 More Evidence on the Active Learning Mechanism

In the following, we provide additional empirical evidence that supports our narrative of

active learning. First, we document that firms incorporate attained information from the in-

troduction of a product to later rounds; products that are introduced locally at least one year

after their national introduction have an attenuated age profile in the average frequency and

absolute size of price adjustment. Second, we show that learning increases when the demand

for the product being launched is more uncertain (e.g., more novel). More novel products ad-

just their prices more often and by larger amounts at the early stage of the product’s life cycle.

Variation across space and the timing of products. We first divide every UPC-

store pair into two different waves. A UPC-store pair belongs to the first wave if it was

launched by a retailer before one year has passed since the UPC was introduced nationally.

Then, a UPC-store pair belongs to the second wave if it was introduced by the same retailer

51In Online Appendix E.5, we show a simple example with active learing and menu costs in which the
boundaries of inaction are dependent on a firm’s beliefs.

52The standard practice in the price-setting literature is that the price gap is defined as a firm’s current
price relative to the price it would set in the absence of menu costs. The latter is also referred to as a “micro”
target. Baley and Blanco (forthcoming) define price gaps relative to steady state values. Conditional on a
firm’s survival, a firm’s full information price can also be considered as its steady state average since firms
eventually learn their type. Using their terminology, Baley and Blanco (forthcoming) note that “specifying
a micro target is irrelevant for the study of impulse responses centered around steady state: the micro target
cancels out as it enters symmetrically the impulse response and the steady state.” They emphasize that it
is only necessary to specify the relative position of a firm’s price in the overall distribution; not its absolute
level.

53The model by Alvarez and Lippi (2020) is another example of a model not encompassed by the sufficient
statistic approach of Alvarez et al. (2016a); precisely because firms also do not close their price gap upon
adjustment in that environment.
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at least one year after the product was first launched at the national level. For each wave, we

use an identical empirical strategy as in Section 2. That is, we run the following regression

for each wave:

Yjsct = α +
A∑
a=1

ϕa ·Da
js + θjs + τt + γc + εjsct

Figure 10 shows that products in the first wave have a higher frequency of adjustment at

entry than those in the second wave. The figure also shows the same patterns for the absolute

size of price changes. At entry, the size of price changes is 7 percent larger than the mean

for products in the first wave and only 4 percent larger for products in the second wave. The

size of absolute price changes then converges back to the mean of its respective wave. The

fraction of new products that is introduced in a specific MSA or by a particular retailer is

extremely similar across the two waves.

Figure 10: Pricing Moments by Waves (Same Retailer)

(a) Frequency of Price Changes (b) Absolute Size of Price Changes

Note: Panel (a) shows the probability of adjusting prices and panel (b) shows the absolute size of price changes by waves. Wave

1 contains products that were launched at some location during a period in the first year since the product was introduced

nationally. Wave 2 contains the same products when launched in different stores a year after their national entries within

the same retailer. The results control for fixed effects at the store, product, and time level. The underlying source is the IRI

Marketing data.

This leads us to believe that the attenuation in pricing moments we observe in the second

wave is not due to selection.54 Our results remain robust whenever waves are required to occur

54See figures D7 (MSA) and figure D8 (retailer) of the Online Appendix. This result conditions on the
fact that products are introduced by the same retailers across the two waves. Our findings are slightly
reinforced whenever this restriction is relaxed. Consistent with Gilbert (2017), in our data retailers mostly
coordinate the introduction of new products across all cities in which they operate. In our data, 82 percent
of new products are introduced in all of a retailer’s markets within a one year period. We use the remaining
variation to define the “second wave” introduction of a product. Our results, however, are similar if we define
the length of a wave to be shorter than one year.
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across different cities. Last, these patterns occur for both price increases and decreases.55

These figures, in addition to our other empirical findings, provide suggestive evidence

of a learning mechanism. Retailers obtain relevant information about the demand of their

product in the first wave and incorporate this knowledge in the second wave. In addition,

retailers’ incentives to learn about their demand diminish over time as valuable information

is collected. Under such a mechanism, retailers should make larger price changes and do

so more frequently in the early stage of their products’ life cycles. This is exactly what we

documented above.

Newness Index. Under a setup with demand uncertainty, a firm is required to learn more

about the demand for its product that has more novel features (from the consumer’s point of

view). As a result, we should expect the age dependence of pricing moments to become more

pronounced for more novel products. To test this hypothesis, we construct a measure for the

“novelty” of a product that uses detailed information about the characteristics of each UPC

which we label as the newness index.

This index counts the number of new and unique attributes a product has at the time

of its introduction relative to all of the other products ever sold by a store within the same

category. Our measure assigns a higher value to products with more unknown features to the

store. Our aim is to capture the novelty of a product from the store’s perspective in order to

study whether its pricing patterns differ when it sells a product whose demand parameters

are more uncertain (i.e., more novel).

We define a product j in category k as a vector of characteristics V k
j =

(
vkj1, v

k
j2, .., v

k
jNk

)′
where Nk denotes the number of attributes we observe in category k. Let Ωk

st contain the set

of product characteristics for each product ever sold in category k at store s at time t, then

the newness index of a product j in category k, launched at time t, and in store s is defined

as follows:

NIkjst =
1

Nk

Nk∑
i=1

1(vkji /∈ Ωk
st). (8)

We assume that each attribute is equally weighted in order to remain agnostic about the

relative importance of each attribute for the degree of newness of a product.56 We then

55See figures A9 (different retailers), A10 (different cities) in Appendix A.2 and D6 (price increases and
decreases) in the Online Appendix.

56For example, the product category “beer” consists of Nbeer = 9 attributes for each barcode: vendor,
brand, volume, type (e.g., ale or lager), package (e.g., can or keg), flavor, size (e.g., bottle or six pack),
calorie level (e.g., light or regular) and color. If a new product within the category k = beer enters with a
flavor and a volume that has never been sold at store s before, its newness index is (1+ 1)/Nbeer = 2/9. Our
index should only be considered as an approximation of the novelty of an item given that it relies heavily
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assess whether the age dependence of pricing moments is stronger for those products that

are newer according to our measure. To do so, we run the following regression:

Y k
jsct = α + γ · agejsct + ϕ · agejsct × NIkjst + θjs + τt + γc + εjstc (9)

where ϕ is our coefficient of interest: it reflects how the age heterogeneity of a product’s

pricing moments depends on its novelty.

Table V: Newness Index - First 6 months
Equal Weights Revenue Weights

Frequency Size Frequency Size
(1) (2) (3) (4)

Age -0.076*** -0.173*** -0.109*** -0.177***
(0.004) (0.006) (0.010) (0.012)

Age×Newness -0.053* -0.228*** 0.038 -0.310***
(0.031) (0.053) (0.058) (0.101)

UPC × Store FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Cohort ✓ ✓ ✓ ✓

Note: The table reports the estimates for γ and ϕ of equation 9. The independent variables are the age of the product and

the age of the product interacted with the newness index. The dependent variables are the frequency and absolute size of the

price changes. The sample is the first 6 months (or 26 weeks) after the product was first launched. Each regression specification

includes UPC-store fixed effects, time fixed effects, and cohort controls that are approximated by the local unemployment rate in

the city and month the product was launched. Columns (1) and (2) report the coefficients in which each UPC-store observation

is equally weighted. Columns (3) and (4) report the results with revenue weights. Standard errors are clustered at the store

level. The ***, **, and * denote significance at 1, 5, and 10 percent levels, respectively.

Table V shows that our index has substantial power in explaining the price-setting patterns we

observe at entry. In Appendix A.2, we show that our conclusions remain unchanged whenever

we measure the newness of a product by whether the introduced product is associated with a

new brand. Hence, our exercise confirms the hypothesis that the incentives for active learning

increase as the novelty of a product (and, hence, its uncertainty) is higher. We interpret this

finding as additional evidence in favor of the active learning narrative.

on the number of attributes provided by the data which might not describe a product in its entirety. On
average, we observe ten product characteristics in each category. Figure D9 in the Online Appendix shows
how the our newness index varies by product category.
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7 Robustness and Extensions

In this section, we show some robustness exercises along two dimensions. First, we argue

that our model of active learning outperforms other mechanisms (such as the customer base)

that potentially generate age-dependent pricing moments. Second, we show that our findings

on the importance of active learning for monetary non-neutrality are robust along several,

other dimensions.

Customer Base. We argued in Section 4 that our model of active learning provided a good

fit to the micro data; in particular, those moments related to the life cycle of U.S. products.

However, another narrative that could generate age dependence in a firm’s pricing moments

is the customer base. Under this mechanism, future demand directly depends on the level of

sold quantity in the past. This generates “investing-harvesting” incentives in which a firm

slowly builds up its customer base (or customer capital) by initially pricing low and sets high

prices whenever its base reaches a certain level. In this section, we will briefly discuss how

a basic menu cost model extended with the customer base falls short of explaining some key

moments in the data.

We extend the canonical model of Golosov and Lucas (2007) with a customer base by

incorporating “deep habits” as in Ravn et al. (2006) and Gilchrist et al. (2017). The full

details of this extension can be found in Appendix C.1, but we discuss its qualitative features

and its quantitative implications in this section. The main intuition behind the mechanics

of the customer base can be summarized by the following system of equations:

cit =

(
pit
Pt

)−σ

(bit−1)
η(1−σ)Ct (10)

bit = (1− δC)bit−1 + δCcit (11)

Under the customer base, current demand directly depends on the past level of the customer

base (parameterized by η < 0). In our specification, the level of the customer base acts

as a demand shifter. Customer capital in period t evolves as a convex combination with

weight δC ∈ [0, 1] between customer capital in period t− 1 and period t’s sold quantity. This

immediately implies that pricing decisions are dynamic (even in the absence of menu costs):

a firm decides on its price by making the optimal trade-off between losses in static profits

and gains in its future customer capital. We embed this version of the customer base in a

standard menu cost model à la Golosov and Lucas (2007). To provide the main intuition

behind a firm’s pricing decision in a model of the customer base, suppose there are no menu
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costs for the moment. Then, a firm’s optimal pricing strategy can be characterized as follows:

pCB(b, z) =
σ

σ − 1

(w
z
− βEz′

[
vb(b, z

′)δC |z
])

(12)

where vb(b, z) is the marginal value of increasing the firm’s customer base when its current

base and productivity are valued at b and z, respectively.57 Given the concavity of v(·, z), a
firm starts off with a low price in the beginning of its life cycle and gradually increases its

price as its customer base grows; a firm has incentives to set a low price upon entry to attract

customers (at the expense of static profits) and sets high prices once it has established a solid

clientele.

We calibrate the customer base model to the same set of moments as in Section 4.1,

evaluate its performance vis-à-vis several micro moments and explicitly verify whether other

stark predictions of the customer base model are present in the data. Figure C1 in Appendix

C.1 indicates that there is age dependence in the frequency of price changes, but this is not

true for the absolute size of price changes. However, it also indicates that the frequency

of price changes is increasing over a product’s life cycle. These observations contradict our

first two stylized facts. Given that there is no age dependence in the absolute size of price

adjustments, it is not surprising that large price changes also do not vary over the product

life cycle. Hence, the customer base is also not consistent with our third stylized fact. These

results are not surprising since our calibration finds values for η and δC that are close to zero.

This implies that the incentives for building up a customer base are weak in the data.58 Note

that our findings are consistent with a recent empirical literature that has not found strong

evidence in favor of the customer base narrative.59

Cross-sectional learning. In our quantitative model, there is no distinction between

firms and products. However, retailers sell multiple products and each of them can be

sold across multiple locations. If demand curves are somewhat correlated across locations,

then a firm can learn faster by experimenting with its prices, not only over time, but also

57Note that a firm adopts the standard, myopic CES price whenever it is fully myopic (i.e., β = 0) or the
customer base is static and does not evolve as a function of previously sold quantities (i.e., δC = 0).

58In fact, our calibrated model of the customer base behaves very similarly to a standard menu cost model
à la Golosov and Lucas (2007). In Appendix C.1, we consider an alternative calibration based on Foster et al.
(2016). Even though the fit of the model worsens, this calibrated version of the customer base does generate
frequencies of price adjustments that are decreasing over the product’s life cycle. However, this calibration
also features no age dependence in the (absolute) size of price adjustments, overestimates the importance of
positive price changes, and underestimates that of negative price changes.

59This includes work by Fitzgerald et al. (2016) using customs data and Argente et al. (2021), who find
no evidence that markups change systematically with firm/brand/product age in a market using a variety
of consumer-level, wholesale-level, and retail-level data sets. We find similar results in our data: prices are
trending downward over their life cycle (see Appendix C.1).

41



by exploiting cross-sectional variation across locations. To understand why cross-sectional

active learning can speed up the learning process, consider the following example.60 Suppose

that demand curves for each product i in location j are iso-elastic and, for simplicity, assume

that elasticities are common across locations:

qijt = s− σipijt + εijt

If demand shocks are perfectly correlated across locations, i.e. εijt = εit for all j, then a

firm can learn its demand within one period by exploiting price and quantity variation across

two stores only. In the other extreme of independent shocks across N stores, a firm still has

N −1 more observations than in the single location case. This implies that this firm also has

N−1 more opportunities to experiment. A possible concern is that the results in our baseline

framework are significantly diminished when allowing for active learning in the cross-section.

In the following, we argue that our baseline with single-location firms is nevertheless a good

benchmark since some key predictions of the multi-location setup are not supported by our

data.

Recall that firms have incentives to learn about their type quickly since active learning

is costly. This is because active learning price policies involve losses in static profits as

emphasized in our simple model in Section 3. To learn in the most efficient way, a firm would

like to maximize the variation in prices across its stores at the early stages of its life cycle.

If cross-sectional learning would be important, therefore, we would expect that the price

variation across stores of a given retailer’s product is declining as a function of a product’s

age. However, this is counterfactual with the within-retailer standard deviation of prices

over the life cycle of U.S. products. We show that the standard deviation of prices within

the average retailer is relatively small and constant over the product’s life cycle (see Figure

A11 in Appendix A.2).61 This finding is in line with the evidence on uniform pricing by

DellaVigna and Gentzkow (2019) and Hitsch et al. (2019) who document that “prices and

promotions are substantially more similar within stores that belong to the same chain than

across stores that belong to different chains.”

Lastly, the motivating example illustrated that cross-sectional learning has more bite in

an environment in which price elasticities for a given retailer are common across locations.

In fact, if price elasticities were independent of each other, then our framework would be a

good description of the data since sales from one location are completely uninformative for

making inferences about the demand curve of another location. While it is unclear ex-ante

which scenario is more likely, we believe current evidence lends more support to the latter

60We thank an anonymous referee for providing this example.
61Our findings are robust to using different measures of dispersion, e.g. 90-10 differential and IQR.
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case. For example, DellaVigna and Gentzkow (2019) show that estimates of within-chain

variation in price elasticities are substantial despite wide variation in consumer demograph-

ics and competition.

Endogenous entry over the cycle. Our baseline framework reflects a stationary en-

vironment in which the number of entrants is constant over time. To investigate whether

cyclical changes in the extensive margin of products play an important role in the ampli-

fication of nominal shocks, we construct a dynamic version of the model. For the sake of

brevity, a full description of the model can be found in Appendix C.3. In this extension,

periods of high aggregate productivity imply periods of high product entry. The calibration

of this framework shows that the real output effects of a nominal shock are 15 percent larger

in booms than during busts. As the entry rate of products increases, the average firm gets

younger and a higher proportion of firms then engages in active learning. Monetary non-

neutrality then increases as firms are less likely to adjust their prices after a nominal shock

due to active learning. In our calibration, for aggregate shocks of ordinary size, the size

distribution of price changes plays a large role in determining the degree to which shocks get

propagated during booms. Further, the kurtosis of the distribution increases which, in turn,

is indicative of a weakening of the selection effect. However, for very large aggregate shocks,

the possibility exists that the average frequency of price adjustments increases, which can

offset this effect. An extreme example of this effect is whenever all firms in the economy are

replaced every period. In this case, prices are close to fully flexible and the effects on real

output are small.

Learning with a continuum of types. Our baseline framework in Section 3 features

the simplest form of active learning with firms varying their price as a control. Even though

a firm is only uncertain about its demand elasticity and its type can only be high or low,

our menu cost model with active learning is already consistent with the life cycle patterns

of Section 2. Nevertheless, we show in Appendix C.4 that the key patterns and incentives

for active learning are preserved when we model it in a more elaborate form. In this case,

there are a continuum of types and firms learn about the slope and intercept of their demand

function. This particular setup of learning, which is taken from Wieland (2000a), preserves

the intuition that we have presented in our two-period model. Optimal pricing under active

learning remains a choice between striking a balance between concave, static profits and a

convex, continuation value which is identical to our quantitative model.

Age trend in demand shocks. Our benchmark model can capture many features of
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the data including standard pricing moments and those related to the product’s life cycle as

Section 2.4 showed. However, there might be other features of the data concerning entering

products that could affect our conclusions. A possible source of concern lies in the fact that

entering products do not immediately feature high quantities of sales. In fact, it might re-

quire some time to build up sales for new products (e.g., building up a customer base). Our

baseline framework does not reflect a gradual buildup of sales for entering products. Thus,

we could be overestimating the importance of new products that in turn affects our results

on the propagation of nominal shocks. To deal with this issue, we allow for an exogenous

age trend in demand shocks. Appendix C.2 shows the details of this implementation. In this

specification, younger products contribute less to aggregate output, but their incentives to

actively learn are higher given the prospects of higher sales in the future. These two forces

contribute in different directions when measuring the response of real output to a nominal

shock, which leaves our results discussed in Section 5 virtually unchanged.

Age-dependent exit rates. A possible concern could be our assumption of a constant

rate of exit. Younger products are more likely to exit the product market, so our assumption

of age-independent exit rates could potentially bias our results on the propagation of nominal

shocks. This is because the composition of products is biased toward younger products that

experience a higher frequency and absolute size of price adjustment as discussed in Section

2.4. In Appendix C.5, we show that the product hazard function as a function of age is

downward sloping in our data. However, the slope of the hazard function with respect to

age is relatively small. Whenever we extend our framework by exogenously incorporating

age-dependent exit rates that are consistent with the data, our conclusions are not affected

significantly.

8 Conclusion

The increasing availability of micro-level data sets has allowed researchers to delve deeper into

the mechanics of a firm’s dynamic pricing behavior. Recent studies have found new insights

into firms’ pricing behavior along several dimensions. Although there is substantial anecdotal

evidence that firms choose different pricing strategies over the life cycle of their products,

the degree of price heterogeneity along this dimension and its aggregate implications have

remained largely unexplored.

In this paper, we aim to fill this gap by developing salient facts on the evolution of

products’ pricing moments over their life cycle and by providing a structural interpretation

for them. We construct a quantitative framework in which firms that face uncertainty about
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their demand curves can actively learn from their pricing strategies and show that this model

can rationalize standard price-setting moments and a new set of stylized facts.

We then investigate the implications of active learning incentives for the propagation

of nominal shocks. The calibration of our model can be interpreted as a hybrid between

standard menu cost models and active learning models. It delivers the life cycle facts that

we documented in the data and is consistent with other salient facts such as the sign of price

changes over a product’s life cycle and the hazard rate of price changes. In our model, relative

to the full information benchmark, the real effects of nominal shocks are at least three times

as large when measured by their cumulative effect on real output.

We believe that our quantitative framework contains the minimal amount of ingredients

to rationalize our empirical findings. Nonetheless, our model could be extended to cover

more complicated mechanisms. We have briefly explored several of them, but we leave the

full economic implications of these extensions for future research.
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APPENDIX

A Data

A.1 Robustness Exercises for Stylized Facts

A.1.1 Linear Specifications for Product Age

Yjsct = α + ϕ · agejsct + θjs + τt + γc + εjsct (13)

Table A1: Life Cycle Properties of Selected Pricing Moments - First 6 months

(1) (2) (3) (4)
Dependent Variable Equal Weights Revenue Weights

Frequency -0.054*** -0.076*** -0.072*** -0.104***
(0.001) (0.002) (0.003) (0.004)

Frequency increases -0.051*** -0.069*** -0.066*** -0.092***
(0.001) (0.002) (0.002) (0.003)

Frequency decreases -0.002*** -0.006*** -0.006*** -0.012***
(0.000) (0.001) (0.001) (0.002)

Absolute size -0.154*** -0.171*** -0.154*** -0.174***
(0.002) (0.005) (0.004) (0.008)

Size increases -0.194*** -0.223*** -0.185*** -0.223***
(0.003) (0.006) (0.005) (0.010)

Size decreases 0.075*** 0.078*** 0.091*** 0.071***
(0.002) (0.006) (0.004) (0.011)

UPC × Store FE ✓ ✓ ✓ ✓
Time FE ✓ ✓
Cohort controls ✓ ✓

Note: The table reports the coefficients (in percent) from OLS regressions. The independent variable is the age of the product

and the dependent variables are the moments defined in the table. The sample is the first 6 months (or 26 weeks) after the

product was first launched. Each regression specification includes UPC-store fixed effects, time fixed effects, and cohort controls

that are approximated by the local unemployment rate in the city and month the product was launched. Columns (1) and (2)

report the coefficients in which each UPC-store observation is equally weighted. Columns (3) and (4) report the results with

revenue weights. Standard errors are clustered at the store level. The ***, **, and * denote significance at the 1, 5 and 10

percent levels, respectively.
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A.1.2 Age-dependent Pricing Moments – Results by Product Category

Table A2: Life Cycle Properties of Selected Pricing Moments - First Year by Category I
Regular Price Changes All Price Changes

Dependent Variable Frequency Abs. Size Frequency Abs. Size
(1) (2) (3) (4)

Beer -0.070*** -0.028*** -0.346*** -0.067***
0.021 0.010 0.038 0.007

Blades 0.063*** -0.089*** -0.209*** -0.019
0.017 0.022 0.027 0.012

Carbonated Beverages -0.275*** -0.119*** -0.115*** -0.034***
0.017 0.016 0.024 0.012

Cigarettes -0.003 0.003 -0.328*** -0.028
0.044 0.048 0.049 0.034

Coffee -0.019 -0.106* -0.200*** -0.016
0.022 0.056 0.028 0.014

Cold Cereal -0.150*** -0.446*** -0.322*** -0.117***
0.010 0.031 0.019 0.015

Deodorant -0.051*** -0.208*** -0.138*** -0.014
0.007 0.033 0.017 0.012

Diapers 0.090*** -0.049*** -0.161*** -0.062***
0.026 0.016 0.039 0.014

Facial Tissue -0.014 -0.070** 0.072 -0.010
0.028 0.029 0.049 0.002

Frozen Dinner -0.161*** -0.204*** -0.160*** -0.077***
0.011 0.016 0.015 0.010

Frozen Pizza -0.115*** -0.168*** -0.073*** -0.106***
0.015 0.022 0.024 0.014

Household Cleaners -0.120*** -0.269*** -0.082** -0.037
0.027 0.060 0.036 0.027

Frankfurters -0.132*** -0.535*** 0.036*** 0.019
0.029 0.079 0.054 0.039

Laundry Detergent -0.063*** -0.227*** 0.054*** -0.040**
0.018 0.035 0.046 0.017

Margarine & Butter -0.004 -0.165*** -0.009 0.017***
0.021 0.037 0.032 0.026

Mayonnaise -0.144*** -0.086 0.677*** 0.208
0.041 0.080 0.091 0.064

Note: The table reports the coefficients (in percent) from OLS regressions for each of the first 15 product categories available

in the IRI Marketing data. The independent variable is the age of the product, and the dependent variables are the moments

defined in the table. The sample is the first year (or 52 weeks) after a product was first launched. The controls include UPC-store

fixed effects, time fixed effects, and cohort controls that are approximated by the local unemployment rate in the city and month

the product was launched. Columns (1) and (2) report the coefficients for regular price changes. Columns (3) and (4) report

the results for all price changes (including sales). The standard errors are clustered at the store level. The ***, **, and * denote

significance at 1, 5 and 10 percent levels, respectively.
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Table A3: Life Cycle Properties of Selected Pricing Moments - First Year by Category II
Regular Price Changes All Price Changes

Dependent Variable Frequency Abs. Size Frequency Abs. Size
(1) (2) (3) (4)

Milk -0.052** -0.047** -0.144*** -0.027*
0.021 0.018 0.031 0.015

Mustard & Ketchup -0.017 -0.118** -0.011 -0.050
0.020 0.046 0.029 0.036

Paper Towels -0.023 -0.236*** -0.339*** -0.402***
0.028 0.053 0.051 0.043

Peanut Butter -0.073*** -0.150*** -0.242*** -0.115***
0.030 0.029 0.040 0.035

Photography Supplies 0.502*** -0.142 -1.055*** -0.233**
0.098 0.109 0.195 0.095

Razors -0.294*** -0.216*** -0.849*** 0.047
0.055 0.072 0.066 0.032

Salty Snacks -0.368*** -0.263*** -0.062*** -0.111***
0.013 0.026 0.018 0.013

Shampoo -0.061*** -0.135*** -0.275*** -0.060***
0.011 0.026 0.026 0.013

Soup -0.031*** -0.268*** -0.214*** -0.147***
0.011 0.032 0.031 0.019

Spaghetti Sauce -0.117*** -0.127** -0.050 0.017
0.017 0.056 0.035 0.022

Sugar Substitutes -0.089*** -0.044 -0.226*** -0.005
0.026 0.029 0.041 0.043

Toilet Tissue 0.046 -0.107*** -0.251*** -0.180***
0.034 0.040 0.060 0.037

Toothbrushes -0.133*** -0.233*** -0.225*** -0.014
0.012 0.051 0.027 0.021

Toothpaste -0.166*** -0.243*** -0.269*** -0.055***
0.010 0.031 0.016 0.010

Yogurt -0.047*** -0.126*** -0.033 -0.014

Note: The table reports the coefficients (in percent) from OLS regressions for each of the last 16 product categories available

in the IRI Marketing data. The independent variable is the age of the product, and the dependent variables are the moments

defined in the table. The sample is the first year (or 52 weeks) after the product was first launched. The controls include

UPC-store fixed effects, time fixed effects, and cohort controls that are approximated by the local unemployment rate in the

city and month the product was launched. Columns (1) and (2) report the coefficients for regular price changes. Columns (3)

and (4) report the results for all price changes (including sales). The standard errors are clustered at the store level. The ***,

**, and * denote significance at 1, 5 and 10 percent levels, respectively.
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A.1.3 Age-dependent Pricing Moments – Fixed Effects Interacted with Time

Figure A1: Frequency and Absolute Value of Price Adjustments at Entry

(a) Frequency of Price Changes (store×time) (b) Absolute Size of Price Changes (store×time)

(c) Frequency of Price Changes (UPC×time) (d) Absolute Size of Price Changes (UPC×time)

Note: The graph plots the average weekly frequency of price adjustments (panel (a) and (c)) and the average absolute size of price

adjustments (panel (b) and (d)) of entering products. The y-axis denotes the probability (absolute size) of price adjustments

in a given week and the x-axis denotes the number of weeks the product has been observed in the data since entry. The graph

plots the coefficients for the age fixed effects of equation 1 where we use the regular price change indicator as the dependent

variable. Equation 1 is computed by controlling for UPC-store effects and the local unemployment rate to represent the cohort

fixed effects. Panel (a) and (b) control for store-time effects, panel (c) and (d) for good-time effects. The calculation uses

approximately 130 million observations and 2.5 million UPC-store pairs. Standard errors are clustered at the store level. The

underlying source is the IRI Marketing data.
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A.1.4 Age-dependent Pricing Moments – All Price Changes in IRI Marketing

and Nielsen RMS

Figure A2: Frequency of All Price Changes
Panel A: IRI Panel B: Nielsen RMS

Note: The figure shows the average weekly frequency of all price changes as a function of the number of weeks since a product

entered. Panel A shows the frequency of regular prices changes, the frequency of sales, and the frequency of all price changes

in the IRI Marketing data. Panel B shows the same variables computed using the Nielsen RMS data for the city of Chicago.

Since the Nielsen RMS data do not provide a sales flag, we use the sales filters developed in Nakamura and Steinsson (2008).

The graph plots the coefficients for the age fixed effects in equation 1 where we use the price change indicator as the dependent

variable. Equation 1 is computed by controlling for the store, UPC and time fixed effects whereas the local unemployment rate

proxies for cohort fixed effects.

Figure A3: Frequency and Absolute Size of Price Changes at Entry (Nielsen Data)

(a) Frequency of Price Changes (b) Absolute Size of Adjustments

Note: The figure shows the average weekly frequency and absolute size of price changes as a function of the number of weeks

since a product entered. Panel (a) shows the frequency of regular prices changes whereas panel (b) shows the absolute size of

regular price changes. Since the Nielsen RMS data do not provide a sales flag, we use the sales filters developed in Nakamura

and Steinsson (2008). The graphs plot the coefficients for the age fixed effects in equation 1 where we use the price change

indicator and the absolute value of the log price change as the dependent variables. Equation 1 is computed by controlling for

the store, UPC and time fixed effects whereas the local unemployment rate proxies for cohort fixed effects.
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A.1.5 Price Changes at Exit

Figure A4: Frequency and Size of Price Changes at Exit
Panel A: Frequency Panel B: Absolute Size

Note: Panel A plots the frequency of regular price changes at exit. Panel B plots the absolute size of regular price changes at

exit. The x-axis denotes the number of weeks a product has left in the market before exiting. The graph plots the coefficients for

the age fixed effects in the regression where we use the regular price change indicator and absolute value of the log price change

as dependent variables. The estimates control for store, UPC, time fixed effects, and the local unemployment rate represents

the cohort fixed effects. Panel A shows that the frequency of price changes stays mostly constant and decreases only around

1 percentage point near exit. Panel B shows that the absolute value of price changes stays close to its average value (around

10 percent) during the last weeks of the product. The calculation uses approximately 5.8 million price changes and 2.5 million

store-UPC pairs. Standard errors are clustered at the store level. The underlying source is the IRI Marketing data.
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A.1.6 Sales/promotions over the Product’s Life Cycle

Figure A5: Frequency and Size of Sales at Entry
Panel A: Frequency Panel B: Size

Note: Panel A plots the frequency of sales changes at entry. Panel B plots the size of the sales at entry. The x-axis denotes the

number of weeks a product has been on the market. The graph plots the age fixed effects coefficients for the regression where we

use the sales indicator (provided by the data) and the size of the sales (in logs) as dependent variables. The estimates control

for store, UPC, time fixed effects, and the local unemployment rate represents the cohort fixed effects. Panel A shows that the

probability that a product is on sale is lower at entry. Similarly, the size of sales stays mostly constant during the first year after

the product is launched. Standard errors are clustered at the store level. The underlying source is the IRI Marketing data.

Figure A6: Frequency and Size of Sales at Exit
Panel A: Frequency Panel B: Size

Note: Panel A plots the frequency of sales at exit. Panel B plots the absolute size of the sales at exit. The x-axis denotes the

number of weeks a product has left in the market before exiting. The graph plots the coefficients for the age fixed effects in the

regression where we use the the sales indicator (provided by the data) and the size of the sales (in logs) as dependent variables.

The estimates control for store, UPC, time fixed effects, and the local unemployment rate represents the cohort fixed effects.

The figure shows that at exit, products are more likely to be on sale and the size of these discounts are larger. Standard errors

are clustered at the store level. The underlying source is the IRI Marketing data.

7



A.1.7 Large Price Changes

Figure A7: Fraction of Price Changes Larger than Two Std. (Positive and Negative)
Panel A: Positive Price Changes Panel B: Negative Price Changes

Note: The figure shows the fraction of price changes larger than two standard deviations from the mean in a given category and

store as a function of the age of the product. Panel A shows the distribution of large price increases and Panel B does this for

the distribution of price decreases. The products considered are those that last at least two years in the market. The underlying

source is the IRI Marketing data.

Figure A8: Fraction of Price Changes Larger than 30%

Note: The figure shows the fraction of price changes larger than 30 percent in a given category and city as a function of the age

of the product. The products considered are those that last at least two years in the market. The underlying source is the IRI

Marketing data.
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A.2 Additional Empirical Exercises

A.2.1 Standard Deviation of Demand Shocks by Product Category

Table A4: Standard Deviation of Demand Shocks by Category (σε)

Category
Beer 0.434 0.430 0.420
Blades 0.391 0.377 0.362
Carbonated Beverages 0.489 0.457 0.438
Cigarettes 0.423 0.405 0.386
Coffee 0.435 0.412 0.399
Cold Cereal 0.429 0.402 0.383
Deodorant 0.368 0.364 0.358
Diapers 0.388 0.376 0.361
Facial Tissue 0.513 0.472 0.437
Frozen Dinner 0.495 0.478 0.462
Frozen Pizza 0.531 0.509 0.482
Household Cleaners 0.387 0.373 0.361
Frankfurters 0.481 0.439 0.408
Laundry Detergent 0.437 0.422 0.408
Margarine & Butter 0.374 0.343 0.318
Mayonnaise 0.419 0.377 0.346
Milk 0.364 0.315 0.291
Mustard & Ketchup 0.441 0.411 0.385
Paper Towels 0.520 0.452 0.424
Peanut Butter 0.400 0.377 0.348
Photography Supplies 0.442 0.423 0.371
Razors 0.357 0.346 0.309
Salty Snacks 0.460 0.412 0.399
Shampoo 0.359 0.353 0.347
Soup 0.465 0.438 0.415
Spaghetti Sauce 0.456 0.442 0.415
Sugar Substitutes 0.407 0.379 0.353
Toilet Tissue 0.479 0.427 0.403
Toothbrushes 0.395 0.388 0.380
Toothpaste 0.434 0.426 0.415
Yogurt 0.414 0.382 0.357
UPC×Store ✓ ✓ ✓
Time ✓
UPC×Time ✓
UPC×Time & Store×Time ✓

Note: The table shows the standard deviation of demand shocks by product category. Conditional on no price change, we

regress quantities on a set of fixed effects. Then, we calculate the standard deviation (over time) of the obtained residuals for

each store. For each product category, these standard deviations at the store level are then aggregated using revenue weights.

The underlying source is the IRI Marketing data.
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A.2.2 Entry and Exit Rates by Product Category

Table A5: Product Entry and Exit by Category
UPC UPC×Store

Category Entry Entry (W) Exit Exit (W) Entry Entry (W) Exit Exit (W)
Beer 0.113 0.020 0.103 0.008 0.239 0.107 0.200 0.064
Blades 0.139 0.122 0.122 0.005 0.303 0.202 0.276 0.091
Carbonated Beverages 0.116 0.032 0.108 0.002 0.298 0.153 0.247 0.086
Cigarettes 0.171 0.010 0.134 0.001 0.187 0.071 0.205 0.065
Coffee 0.126 0.032 0.111 0.006 0.256 0.108 0.205 0.067
Cold Cereal 0.179 0.049 0.157 0.002 0.264 0.120 0.226 0.076
Deodorant 0.160 0.105 0.132 0.014 0.288 0.188 0.276 0.111
Diapers 0.216 0.183 0.193 0.065 0.389 0.274 0.364 0.236
Facial Tissue 0.231 0.108 0.159 0.013 0.300 0.169 0.293 0.165
Frozen Dinner 0.150 0.073 0.144 0.059 0.294 0.159 0.267 0.133
Frozen Pizza 0.124 0.057 0.101 0.005 0.265 0.128 0.223 0.075
Household Cleaners 0.152 0.058 0.135 0.006 0.271 0.152 0.265 0.100
Frankfurters 0.078 0.009 0.082 0.004 0.219 0.097 0.206 0.070
Laundry Detergent 0.180 0.076 0.135 0.010 0.297 0.154 0.267 0.108
Margarine & Butter 0.081 0.059 0.106 0.010 0.206 0.114 0.199 0.059
Mayonnaise 0.110 0.086 0.095 0.002 0.234 0.141 0.195 0.076
Milk 0.084 0.020 0.097 0.024 0.274 0.100 0.237 0.079
Mustard & Ketchup 0.086 0.030 0.119 0.002 0.209 0.092 0.196 0.055
Paper Towels 0.189 0.082 0.145 0.014 0.318 0.206 0.318 0.150
Peanut Butter 0.099 0.031 0.076 0.000 0.220 0.095 0.184 0.070
Photography Supplies 0.087 0.028 0.203 0.007 0.197 0.118 0.291 0.099
Razors 0.231 0.378 0.119 0.001 0.395 0.427 0.322 0.132
Salty Snacks 0.158 0.101 0.165 0.015 0.348 0.184 0.332 0.157
Shampoo 0.151 0.126 0.145 0.012 0.336 0.229 0.296 0.133
Soup 0.097 0.043 0.091 0.002 0.227 0.096 0.182 0.062
Spaghetti Sauce 0.090 0.034 0.073 0.005 0.225 0.099 0.192 0.065
Sugar Substitutes 0.104 0.030 0.080 0.003 0.208 0.096 0.170 0.052
Toilet Tissue 0.221 0.147 0.156 0.006 0.322 0.221 0.292 0.133
Toothbrushes 0.134 0.076 0.148 0.006 0.272 0.173 0.277 0.119
Toothpaste 0.185 0.073 0.138 0.005 0.307 0.161 0.269 0.107
Yogurt 0.147 0.117 0.122 0.013 0.322 0.205 0.265 0.090

Note: The table shows the statistics for entry and exit rates at different levels of aggregation for one year intervals. Columns

with ”W” indicate that rates are weighted by revenues. Columns (1)-(4) show the statistics at the UPC level whereas columns

(5)-(8) show these at the UPC-store level.
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A.2.3 Novelty of Product: New Brand

Table A6: New Brand - First 6 Months
Equal Weights Revenue Weighted

Frequency Size Frequency Size
(1) (2) (3) (4)

Age -0.075*** -0.171*** -0.104*** -0.177***
(0.002) (0.005) (0.004) (0.008)

Age×New Brand -0.028*** -0.047*** -0.020** -0.085***
(0.005) (0.014) (0.008) (0.018)

UPC × Store FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Cohort ✓ ✓ ✓ ✓

Note: The independent variable is the age of the product interacted with an indicator that equals one if the brand and volume

of the product are new. The dependent variables are the frequency and absolute size of price changes. The sample is the first 6

months (or 26 weeks) after the product was first launched. Each regression specification includes UPC-store fixed effects, time

fixed effects, and cohort controls that are approximated by the local unemployment rate in the city and month the product was

launched. Columns (1) and (2) report the coefficients in which each UPC-store observation is equally weighted. Columns (3)

and (4) report the results with revenue weights. Standard errors are clustered at the store level. The ***, **, and * denote

significance at 1, 5 and 10 percent levels, respectively.

A.2.4 Waves

Figure A9: Pricing Moments by Waves (National)

(a) Frequency of Price Changes (b) Absolute Size of Price Changes

Note: Panel (a) shows the probability of adjusting prices and panel (b) shows the absolute size of price changes by waves. Wave

1 represents products that were launched at some location during a period in the first year since the product was introduced

nationally. Wave 2 represents the same products when launched in different stores a year after their national entries. The results

control for fixed effects at the store, time and product level.
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Figure A10: Pricing Moments by Waves (Different Cities)

Note: The figure shows the probability of adjusting prices and the sizes of adjustment by waves. Wave 1 represents products

that were launched during the first year after the product was introduced. Wave 2 represents the same products when launched

in different stores (located in different cities) a year later. Panel A shows the frequency of price adjustment and Panel B the

absolute size of price changes. The results control for fixed effects at the store, time and product level.

A.2.5 Within-chain Dispersion of Prices

Figure A11: Within-Chain Dispersion of Prices

Note: The figure shows the within-chain standard deviation of prices over the life cycle of US products. The y-axis is the standard

deviation of prices within retailers, and the x-axis denotes the number of weeks the retailer’s product has been observed in the

data after it entered the market. The underlying source is the IRI Marketing data.
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B Model

B.1 Computational Details

Algorithm: pseudo-code

We assume (log) consumer taste shocks are drawn from a normal distribution, i.e. we have

ε ∼ N(0, σ2
ε). We implement integrals over taste shocks computationally using Gaussian

quadrature methods. With some abuse of notation, let the weights and nodes of this ap-

proximation method be denoted by {ωGHj }MG

j=1 and {ζGHj }MG

j=1 respectively.62 The quadrature

weights and nodes are chosen “optimally”. Specifically, the nodes {ζGHj }MG

j=1 are the roots of

the Hermite polynomial HM(ζ) which is defined as HM(ζ) =
∮

MG!
2πi

exp (−t2 + 2tζ) t−(MG+1)dt

and the weights are equal to:

ωGHi = 2M
G−1M !

√
π

(MG)2H
MG−1

(ζGH
j )2

We discretize firms’ persistent productivity processes with the procedure from Tauchen

(1986). This results in a symmetric MT -dimensional transition matrix whose elements are

denoted by {T (i, j)}i,j.

I (initialization). Set P 0
1 , P

0
2 , ω

0 and convergence criteria ∆ε > 0. Let the counter k be

equal to 0.

II (out). Given k, set P k
1 , P

k
2 and ωk.

III (in). Set L = 1
3
and calculate aggregate profits Πk using:

Lχ =
1

ωk
1

L+Πk

Then, set aggregate income equal to Sk = L + Πk. Define the aggregate state as

Ak = (P k
1 , P

k
2 , S

k) and set the aggregate price level as P k = (P k
1 )

η(P k
2 )

1−η.

IV. Using value function iteration over a finite grid, solve the firm’s problem by

obtaining the value function v(λ, z, p−1):

62The superscript stands for “Gaussian-Hermite” quadrature. This is useful to approximate functions of
the form f(x) = exp(−x2) which includes the family of normal distributions.
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v(λ, z, p−1) = max
{
vA(λ, z), vNA(λ, z, p−1)

}
with

vA(λ, z) = max
p≥0

λΠ1(p; z) + (1− λ)λΠ2(p; z)− ψ 1
Pk

+ βλEε,z′
[
v
(
b1(λ, log(

p
1+π

), ε
)
, z′, p

1+π
)

∣∣∣∣z]
+ β(1− λ)Eε,z′

[
v
(
b2(λ, log(

p
1+π

), ε
)
, z′, p

1+π
)

∣∣∣∣z]
vNA(λ, z, p−1) = λΠ1(p−1; z) + (1− λ)λΠ2(p−1; z)

+ βλEε,z′
[
v
(
b1(λ, log(

p−1

1+π
), ε
)
, z′, p−1

1+π
)

∣∣∣∣z]
+ β(1− λ)Eε,z′

[
v
(
b2(λ, log(

p−1

1+π
), ε
)
, z′, p−1

1+π
)

∣∣∣∣z]
where integrals over ε are approximated by Gaussian quadrature methods with

MG = 21 and integrals over firm-level productivity z′|z are calculated using the

methods from Tauchen (1986) with MT = 23. Furthermore, we have MP = 1501

grid points for prices and M ℓ = 51 grid points for beliefs.

IV. Store the optimal pricing policy function p∗(λ, z;Ak). We explicitly verify that

this maximizer associated with vA(λ, z) is single-valued and the global maximizer

over the interval [p∗2, p
∗
1].

V.a. Simulation. Simulate a panel of T = 1000 weeks and N = 1000 firms who use

the policy function p∗(λ, z;Ak). The first 50 periods are burn-in periods.63

Simulation initialization. The initial distributions of cross-sectional beliefs

and productivity φi,0(λ, z;Ak) for i = 1, 2 are independent. Furthermore, beliefs

are degenerate at λ0 and productivity is set at its stationary distribution. For

each firm n ∈ {1, 2, . . . , N}, assign it to be a firm of type σn = σ1 with probability

λ0. Set time counter t to zero.

V.b. Given a firm’s belief λn,t, let firm n set price p∗(λn,t, zn,t;Ak). Generate log sales

by drawing log demand shocks εn,t ∼ N(0, σ2
ε) through:

log(qn,t) = −σnlog
(
p∗(λn,t, zn,t;Ak)

)
+ µi + log(Sk) + εn,t

63Quantitatively, our results do not change much whenever we simulate N = 10000 firms instead.
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where µi = (σi − 1)log(P k
i ) + log(ηi). Update the firm n’s posterior to:

λn,t+1 = B(λn,t, p
∗(λn,t, zn,t;Ak), qn,t, S

k)

Apply exogenous death shocks δ for each firm. If a firm exits, then replace it

by a new firm which is assigned to be a type σ1 firm with probability λ0. Its

prior becomes λ0. Furthermore, its idiosyncratic productivity is drawn from the

unconditional distribution. A firm is allowed to change its price in the first period

upon entry without incurring the menu cost.

V.c. Calculate φi,t+1(λ, z;Ak) for each i = 1, 2. Stop the simulation when the dis-

tribution of beliefs and productivity settles in both measures of active firms or

when the number of simulation periods exceed some upper bound T > 1, i.e.

sup
λ,z

||φi,t+1(λ, z;Ak)−φi,t(λ, z;Ak)|| < ∆φ for i ∈ {1, 2} and/or t = T . Otherwise,

set t := t+ 1 and repeat step V.b.

VI. Calculate P
temp

i with the simulated density Φ̃i(λ, z;Ak):

P
temp

i =

(∑
λ,z

p∗(λ, z;Ak)1−σiΦ̃i(λ, z;Ak)

) 1
1−σi

where Φ̃i(λ, z;Ak) is the empirical cross-sectional probability distribution function of

beliefs. Then, calculate aggregate labor and label it as Ltemp. If we have:

max

{∣∣∣∣ P k
1 − P temp

1

0.5(P k
1 + P temp

1 )

∣∣∣∣ , ∣∣∣∣ P k
2 − P temp

2

0.5(P k
2 + P temp

2 )

∣∣∣∣} < ∆ε

then, stop. Otherwise, set P k+1
1 = P temp

1 and P k+1
2 = P temp

2 . Let ωk+1 > ωk if and only

if L− Ltemp < 0. Update the counter to k := k + 1 and repeat step II.

Finally, we simulate the modelMS = 50 times and perform our counterfactual experiment for

each simulation. The reported output impulse response function in Section 5 is the average

impulse response function across these simulations.

B.2 Elements of Identification

In this section, we confirm our intuition of Section 4.1 and verify that those parameters

governing the signal-to-noise ratio and prior beliefs are most informative for pricing moments

at the early stages of a product’s life cycle. To do so, we set all parameters to their estimated
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values (reported in table III) and then vary each of them separately while holding the others

constant. We focus on the parameters σ2 and λ0 and show that these parameters are likely

more informative for active learning.

In this case, we show the frequency and absolute size of price adjustment in week 2 since

they summarize the slope of the life cycle patterns for both moments.64 Figure B1 reports

comparative statics with respect to σ2. The value of this parameter in our baseline calibration

is represented by the vertical red line. Given that both σ1 (vertical black line) and σε are held

constant, the horizontal axis also represents the signal-to-noise ratio. By construction, it is

zero when σ1 = σ2. Panel (a) and (b) show that as σ2 approaches σ1 the life cycle patterns

of both the frequency and the absolute size of price adjustment flatten. This is because, for

a given σε and σ1, the gains from actively learning decrease as the signal-to-noise ratio is

reduced. Similarly, on the other extreme, if σ2 is very far apart from σ1 the demand curves

are far enough from each other such that the gains from active learning are also reduced.

Recall from our intuition in Section 3.1 that a firm is basically able to learn its type through

a single price change whenever demand curves are separated out a lot; that is, whenever σ2

is much higher than σ1. This is reflected by the flattening of the life cycle profile of the

frequency for large values of σ2. Our estimated value of σ2 lies between these two extremes

showing that in our model active learning motives are important and somewhat persistent.

Panels (c) and (d) in B1 consider the same moments as before but vary the common prior

λ0 instead. Both panels show that as λ0 approaches unity, the incentives for active learning

decrease and the life cycle patterns of both moments flatten. Panel (c) shows that the life

cycle patterns of the frequency of adjustment informs us on the value of the initial belief. A

value of λ0 closer to 0.35 increases the steepness of the life cycle profile for the frequency of

adjustment reflecting larger incentives for learning. This is because beliefs closer to 0.35 are

closer the confounding belief λ̂. This is the level for λ0 at which the continuation value of

gaining more information is minimized. As a result, any subsequent price change away from

the confounding price p̂ = p∗(λ̂) will generate a lot of information on the margin and, hence,

incentives for active learning are maximized at this point.

64The comparative statics for the frequency of price adjustment and the absolute size of price changes in
week 10 are very similar.
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Figure B1: Elements of Identification

(a) Frequency Week 2 (σ2) (b) Absolute Size Week 2 (σ2)

(c) Frequency Week 2 (λ0) (d) Absolute Size Week 2 (λ0)

Note: The graphs plot the relationship between the estimated parameters and several moments relevant for active learning. We

set all parameters to their baseline estimates reported in table III and represented by the vertical red line. Then, we move each

parameter around its estimated value holding the others constant. In panel (a) and (c) the moment reported is the frequency of

price adjustment in week 2. In panel (b) and (d) the moment reported is the absolute size of price adjustment in week 2. The

parameter in panel (a) and (b) is σ2 and the black vertical line indicates the value of σ1. The parameter in panel (c) and (d) is

λ0.
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Figure B2: Elements of Identification

(a) Frequency (ψ) (b) Absolute Size Week 10 (ψ)

(c) Frequency (σς) (d) Absolute Size Week 10 (σς)

Note: The graphs plot the relationship between estimated parameters and several pricing moments that are relevant for active

learning. We set all parameters to their baseline estimates reported in table III. The value for each parameter in the baseline

calibration is represented by vertical red lines. Then, we move each parameter around its estimated value while holding the

others constant at their baseline values. The moment reported in panels (a) and (c) is the frequency of price adjustment. The

moment reported in panels (b) and (d) is the average size of price increases. The parameter in panels (a) and (b) is the menu

cost ψ. The parameter in panels (c) and (d) is the standard deviation of the idiosyncratic cost shock σς .

Figure B2 reports more conventional comparative statics of menu cost models. It shows,

for example, that the menu cost ψ affects both the frequency of price adjustment and the

absolute size of price adjustments in week 10 in opposite directions (see panels (a) and (b)

in the above figure). It also shows that the standard deviation of idiosyncratic productivity

σζ are positively associated to the frequency of price adjustment.
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B.3 Additional Untargeted Moments

In this section, we explore and discuss the performance of our quantitative model in Section 4

relative to other untargeted moments. First, we focus on the fraction of positive and negative

price changes along a product’s entire life cycle.As captured by the left part of figure B3, the

data indicates that the fraction of positive price changes is roughly stable over the product’s

life cycle at around 60 percent; with the exception of the first four weeks in which positive

price changes are more prevalent. Our model, displayed in the right panel of figure B3, is in

line with this observation.

Figure B3: Direction of Price Changes Conditional on Adjustment (Model vs Data)

(a) Data (b) Model

Note: The graphs plot the share of price increases and price decreases conditional on adjustment over a product’s life cycle. It

considers the first six months after entry. The underlying source is the IRI Marketing data.

Second, we look at the distribution of entry prices. In our framework, firms enter with a

common prior belief λ0 and are allowed to make their first price change (directly upon entry)

without incurring the menu cost. Furthermore, they draw a level of productivity from its

corresponding stationary distribution. Given this setup, the distribution of entry prices in

the model is completely governed by the stochastic process for idiosyncratic productivity.

Hence, its shape is determined by the parameters ρ and σζ . The above figure indicates that

we slightly underpredict the standard deviation of entry prices but are able to capture its

qualitative features.
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Figure B4: Distribution of Entry Prices (Model vs Data)

Note: The graph plots the distribution of (log) entry prices in the data. Entry prices are purged of UPC, store-product category,

store-time and UPC-time fixed effects. The black line depicts the distribution of entry prices of the quantitative framework.
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C Extensions

C.1 Customer base

In this section, we extend the canonical framework of Golosov and Lucas (2007) by adding a

customer base in the most parsimonious way as possible. We do so by modeling the customer

base through “deep habits” as in Ravn et al. (2006) and Gilchrist et al. (2017). We show

that such a model can rationalize the fact that product-level sales are dependent on age, but

its pricing implications are not consistent with the documented life cycle patterns of Section

2.

Under the setup with deep habits, the aggregate consumption good Ct consists of a

continuum of monopolistically competitive goods and is constructed as follows:

Ct =

∫ 1

0

(
cit
bηit−1

)σ−1
σ

di


σ
σ−1

where bit is the habit stock associated with good i at time t and we have σ > 1 and η < 0.

The former denotes the elasticity of substitution between goods whereas the latter indicates

the relative importance of habits for current consumption. The good-specific habit stock is

assumed to be external: consumers take this level of stock as given. In addition to being

more tractable, the assumption of external habits avoids the time-inconsistency problem of a

firm setting its price associated with good-specific internal habits (Nakamura and Steinsson,

2011). Following Ravn et al. (2006) and Gilchrist et al. (2017), we impose an exogenous law

of motion for the external habit:

bit = (1− δC)bit−1 + δCcit

where δC denotes the depreciation rate of the customer base. Given the fact that consumers

take the stocks of external habits {bit}i∈[0,1] as given at time t, its good-specific demand can

be derived as:

cit =

(
pit
Pt

)−σ

(bit−1)
η(1−σ)Ct

The CES price index, adjusted for external habits, is denoted by:

Pt =

(∫ 1

0

(
pitb

η
it−1

)1−σ
di

) 1
1−σ
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Identical to the baseline framework, we assume that each firm produces with a labor only

production function that features constant returns to scale. Given a consumer’s demand for

good cit, we can derive that a monopolistically competitive firm i’s real profits are equal to:

Πit(pit; bit−1) =

(
pit −

Wt

zit

)(
pit
Pt

)−σ

(bit−1)
η(1−σ)Ct

Pt

In the absence of menu costs, a firm’s dynamic pricing problem can be characterized as:

v(b−1, z) = max
p≥0

Π(p; b−1) + βEz′ [v(b, z′)|z]

s.t. b = (1− δC)b−1 + δCc(p)

c(p) =
( p
P

)−σ
(b−1)

η(1−σ)C

The optimal pricing policy is characterized by its first-order condition which satisfies:

c(p) +

(
p− W

z

)
∂c(p)

∂p
= −βEz′

[
vb(b, z

′)δC
∂c(p)

∂p

]
Given that consumer demand has a constant price elasticity, we can rearrange this equation

as:

pCB(b−1, z) =
σ

σ − 1

(
W

z
− βEz′

[
vb(b, z

′)δC |z
])

Hence, a firm’s optimal price under a customer base is always dominated by its myopic

pricing policy since we have vb(·, z) ≥ 0 for all z. In the quantitative extension, we assume

that firms are faced with a nominal rigidity in the form of a menu cost (denoted in units of

labor) and allow for inflation. A firm’s dynamic programming problem is then summarized

by the following Bellman equation:

v(b−1, z, p−1) = max
{
vA(b−1, z), v

NA(b−1, z, p−1)
}

where the values of adjusting and not adjusting are given by:

vA(b−1, z) = max
p≥0

(
p

P
− W

zP

)( p
P

)−σ
b
η(1−σ)
−1 C − ψW

P

+ βEz′
[
v

(
b, z′,

p

1 + π

) ∣∣∣∣z]
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s.t. b = B(b−1, p) = (1− δC)b−1 + δC
[( p
P

)−σ
b
η(1−σ)
−1 C

]
vNA(b−1, z, p) =

(
p

P
− W

zP

)( p
P

)−σ
b
η(1−σ)
−1 C − ψW

P

+ βEz′
[
v

(
b, z′,

p

1 + π

) ∣∣∣∣z]
s.t. b = B(b−1, p) = (1− δC)b−1 + δC

[( p
P

)−σ
b
η(1−σ)
−1 C

]
The two crucial parameters that govern the customer base are η and δC . As mentioned

before, η determines how important a build-up customer base is for current demand whereas

δC determines the speed at which a customer base accumulates.

Then, we calibrate our model of the customer base to the same moments as mentioned

in Section 4.1 and verify whether such a framework is consistent with our stylized facts. The

calibrated parameters can be found below.

Table C1: Internally Calibrated Values of the Model’s Parameters (Customer Base)

Description Parameter Value
Elasticity of Substitution σ 5.7
Elasticity of Customer Capital η −0.08
Customer Capital Depreciation δC 0.09
Fixed Cost ψ 0.10
Productivity Persistence ρ 0.90
Productivity Standard Deviation σς 0.03

Our calibration finds low values for η and δC which implies that the incentives for the customer

base are weak in the data. As a result, this calibrated model essentially behaves as a standard

menu cost model à la Golosov and Lucas (2007). As can be seen from the figure below, there

is no age dependence in the absolute size of price adjustments. Even though there is age

dependence for the frequency of price changes, it increases (rather than decreases) over a

product’s life cycle. This is not surprising since, upon entry, firms are allowed to change

their prices without incurring a menu cost. Thus, a firm has little to no incentives to change

its price directly afterward. After this period, the frequency of price changes does not display

any age dependence: price changes are then purely determined by the stochastic process for

idiosyncratic productivity.
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Figure C1: Frequency and Absolute Size of Price Changes at Entry (Customer Base)

(a) Frequency of Price Changes (b) Absolute Size of Adjustments

Note: The figure shows the simulation results of the quantitative model with a customer base and compares them with their

data counterparts. We simulate a panel of 1,000 firms over 1,000 periods and compute both the predicted frequency of price

adjustments and the absolute size of price changes over the life cycle of a product. The results for the frequency of price changes

are shown in panel (a) and those for the absolute size of price changes are shown in panel (b).

Since there is no age dependence in the absolute size of price changes, there should also be

no age dependence in the fraction of large price changes over a product’s life cycle.65 Our

intuition is confirmed by the figure below.

65Our pricing formula (12) implies that price changes in the customer base setup are roughly constant over
the life cycle whenever the customer base increases in a convex fashion. This is because of the concavity of
v(·, z).
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Figure C2: Fraction of Price Changes Larger than Two Standard Deviations (Customer Base)

Note: The figure shows the fraction of price changes larger than two standard deviations from the mean in a given category and

store as a function of the age of the product. The products considered are those that last at least two years in the market. The

underlying source is the IRI Marketing data.

Lastly, the customer base model does predict that positive price changes are relatively more

important than negative ones. However, its patterns for the frequency and size of price

adjustment are counterfactual. This is illustrated in the figure below.

Figure C3: Frequency and Size of Price Increases and Decreases at Entry (Customer Base)

(a) Frequency (b) Size

Note: Panel (a) shows the frequency of price increases and decreases in the data and those generated by the calibrated customer

base model. Panel (b) shows the size of price increases and decreases in the data, and those generated by the calibrated customer

base model. We simulate a panel of 1,000 firms over 1,000 periods and compute both the predicted frequencies of adjustment

and the sizes of price changes over the life cycle of a product.
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Table C2: Moments of Price Change Distribution (Customer Base)

Moment Data Model with Learning Customer Base
(1) (2) (3)

Frequency Week 2 0.09 0.09 0.002
Frequency Week 10 0.06 0.06 0.06
Absolute Size Week 2 0.17 0.17 0.10
Absolute Size Week 10 0.11 0.11 0.11
Frequency 0.05 0.05 0.05
Fraction Up 0.66 0.56 0.68
Average Size 0.02 0.003 0.04

Not Targeted
Std. of Price Changes 0.11 0.11 0.10
75th Pct Size Price Changes 0.10 0.11 0.13
90th Pct Size Price Changes 0.18 0.13 0.14

Calibration based on Foster, Haltiwanger and Syverson (2006). The previous

calibration of a customer base model indicated that the incentives for building up customer

capital are quite weak. In the following, we employ a different calibration strategy in which

the parameters for the customer base are taken from Foster et al. (2016). They structurally

estimate the customer base parameters (η, δC) and find values of 0.92 and 0.188 for η(1− σ)

and δC respectively. However, this depreciation rate is based on an annual basis. Our

framework’s unit of time is at the weekly level. Therefore, we set δC to satisfy:

(1− δC)52 = 1− 0.188

which gives a depreciation rate for the customer base of δC ≃ 0.003997. Under this calibra-

tion, we find that the customer base is able to generate pricing moments that are consistent

with our first stylized fact. That is, the frequency of price adjustment is declining over a

product’s life cycle. However, in contrast to the patterns in the data, this result is mainly

driven by positive price changes. This is displayed in the left panel of the figure below.

26



Figure C4: Frequency and Absolute Size of Price Changes at Entry (Customer Base - FHS
calibration)

(a) Frequency (b) Absolute Size

Note: The graph plots the average weekly frequency of price adjustments of products entering the market. The data is generated

by simulating the Golosov-Lucas model with a custumer base under the calibration described in Section C.1. The y-axis denotes

the probability that a product adjusts its price in a given week whereas the x-axis denotes the number of weeks the product has

been observed in the data since it entered the market. The blue (red) line indicates the frequency of positive (negative) price

adjustments.

The simulated data indicates that customer bases are built up extremely fast. Firms set low

prices to attract customers and then immediately exercise their market power afterward in

a gradual fashion. This is also reflected in the frequency of price adjustments by product

age. In the early stage of a product’s life cycle, firms’ incentives for harvesting are extremely

large. Thus, they are willing to pay the menu cost to increase their prices. This incentive

then slows down over time. Figure C5 indicates, however, that prices are trending downward

over their life cycle (even when corrected for inflation).66 As displayed by the right panel

of the above figure, we still find that the absolute size of price changes is constant over a

product’s life cycle; contradicting our second stylized fact.

66Alternative mechanisms that induce pricing strategies that vary over a product’s life cycle could poten-
tially explain some of our stylized facts but they do not do so simultaneously. Furthermore, a large set of
these alternative explanations hinge upon the fact that the majority of price adjustments upon entry imply
a monotone path of prices. These mechanisms include narratives on penetration pricing, declining marginal
cost of production, intertemporal price discrimination, and changes in market power as a product ages.
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Figure C5: Price Index for New Products

Note: The graph plots a geometric price index for new products which is normalized to 0 at entry and controls for aggregate

inflation. It considers the first year after a product enters. The expenditure weights are at the UPC level and based on the first

year of sales of each product. The underlying source is the IRI Marketing data.

C.2 Demand shocks with age-dependent trend

In Section 2, we showed that entering products play a substantial role in the aggregate

economy. Approximately 45 percent of products in the U.S. market entered in the last

five years and they account for about 30 percent of total expenditures. However, entering

products do not immediately reach these high levels of sales because, for example, they need

to build up customer bases. Paciello et al. (2019) argue that the pricing dynamics of firms

are heavily influenced by customer retention concerns that are relatively more important for

entering products. As a result, our quantitative results could be biased whenever we do not

take into account that product sales require some time to be built up.

The easiest, albeit mechanical, way of incorporating the fact that entering products’ sales

grow over time starting from a relatively low level is through an age trend in demand shocks.

We add the following adjustment to the baseline framework. Assuming that the realization

of taste shocks are independent across all groups and over time, we specify demand shocks

to depend on a product’s age through:

αit(k, a) = ωi(k, a)αit(k)
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Then, the price index becomes:

Pit =

(∫
k∈Ji

∫
a

ωi(k, a)pit(k)
1−σida dk

)1/1−σi

Recall that we are trying to capture the fact that entering products’ sales start at a relatively

low level and grow asymptotically towards some steady rate in a concave fashion. This steady

rate is achieved fairly quickly in our data set and occurs within the first three months after

the product enters the market. As a result, we use the following functional form:

ωi(k, a) = ι · aυ

where we calibrate the initial level ι and age-dependent slope υ to match the age profile of

sales. Even though younger firms contribute less to output under this specification, their

incentives to actively learn are higher given the prospects of higher sales in the future. In

other words, the opportunity cost of poor sales at entry is low relative to future potential

sales. These two forces contribute in different directions when measuring the response of

real output to a nominal shock. Nonetheless, we find that the effects on real output remain

quantitatively similar to those obtained in our benchmark model.

C.3 Endogenous Entry over the Cycle

Our baseline framework reflects a stationary environment in which the number of entrants

is constant over time. Even though our baseline framework is successful in replicating the

stylized facts that we documented in Section 2, it does not capture whether the magnitude of

the nominal shock amplification varies over the business cycle. In this section, we construct

a fully dynamic version of our model to investigate whether cyclical changes in the extensive

margin of products play an important role in the amplification of nominal shocks.

Following work by Lee and Mukoyama (2018), aggregate productivity shocks are the

source of aggregate fluctuations. In addition, the entry rate of products is endogenous, which

allows it to vary with the aggregate state of the economy. In this section, we present the

necessary ingredients to allow for a procyclical entry rate in our model.

Consumers and firms are identical as in the baseline framework. However, a firm’s pro-

ductivity now consists of two components: an idiosyncratic one as described in Section 3 and

an aggregate component Zt ∈ {ZL, ZH}. Aggregate productivity Zt follows a symmetric, two

state Markov chain. The transition matrix between high and low aggregate productivity is

then characterized by:

29



[
ϑ 1− ϑ

1− ϑ ϑ

]

The average duration of a state is given by:

∞∑
τ=1

τ(1− ϑ)ϑτ−1 =
1

1− ϑ

Recall that a price-adjusting incumbent firm has a three-dimensional idiosyncratic state. We

denote this state by vit(k) = (λit(k), z
i
t(k), p

i
t−1(k)). Then, a firm’s ex-ante expected profits,

excluding its menu cost, can be written as a function of the idiosyncratic state vit(k) and the

aggregate state ξt ≡ (St, P1t, P2t, Zt):

Πt(p;v
i
t(k), ξt)

A firm chooses a path of prices {pit(k)}t≥0 to maximize its expected, discounted profits. The

firm’s problem in Bellman form is then equal to:

v(v, p−1; ξ) = max
{
vA(v; ξ), vNA(v; ξ)

}
where the value of adjusting and not adjusting are respectively given by:

vA(v; ξ) = max
p≥0

Π(p;v, ξ)−W · ψ

+ Eξ′,ε,z′
[
q(ξ, ξ′)λv

(
b1(λ, log(

p
1+π

), ε), z′, p
1+π

; ξ′
)

+ q(ξ, ξ′)(1− λ)v
(
b2(λ, log(

p
1+π

), ε), z′, p
1+π

; ξ′
) ∣∣∣∣ξ, z]

vNA(v; ξ) = Π(p−1;v, ξ)

+ Eξ′,ε,z′
[
q(ξ, ξ′)λv

(
b1(λ, log(

p−1

1+π
), ε), z′, p−1

1+π
; ξ′
)

+ q(ξ, ξ′)(1− λ)v
(
b2(λ, log(

p−1

1+π
), ε), z′, p−1

1+π
; ξ′
) ∣∣∣∣ξ, z]

where the stochastic discount factor is given by q(ξ, ξ′) = β u
′(C′)
u′(C)

.

There is a pool of potential entrants. In the beginning of a period, everyone observes the

aggregate state ξt. Furthermore, every potential entrant is endowed with an idiosyncratic

productivity z drawn from the exogenous distribution H. If a potential entrant wants to

become a producer, she needs to pay a fixed entry cost cE, which is denoted in units of labor.

At entry only, we assume that the entrant is allowed to choose its price without incurring
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the menu cost. The value of becoming a producer then becomes:

vEt (zt; ξt) = vAt (λ0, zt, 1; ξt) +Wt · ψ

This structure indicates that only those potential entrants with sufficiently high values for zt

can actually enter the product market. In fact, there is a threshold value z∗t that is defined

by the free entry condition:

vEt (z
∗
t ; ξt) = Wt · cE

= ωSt · cE

such that potential entrants become producers if and only if their drawn level of productivity

satisfies zt ≥ z∗t .

To analyze the model in general equilibrium, we need to consider an environment in which

consumers and firms engage in optimal behavior while the markets for goods and labor clear.

Optimization behavior is apparent from the representative consumer’s first-order conditions

and firms’ value functions. The market for goods clears by construction because we plug the

optimal consumer demand into the firm’s optimization problem. As a result, we only need

to clear the labor market.

Let φt(λ, z, p−1) denote the labor demand of a firm with idiosyncratic state v. Assuming

the mass of potential entry in each period is one, its distribution at period t is denoted by

µt(v). Then, the quantity of labor demanded by incumbent producers is:

Ld,pt = Nt ·
∫
v

φt(v)dµt(v)

where Nt denotes the actual mass of potential entrants in period t. Furthermore, labor is

used for the costs of entry. Thus, total labor demand Ldt can be characterized as:

Ldt = Ld,pt +Nt · (1−H(z∗t )) · cE

The above equation characterizes the optimal labor demand. Then, the market for labor

clears when the labor supply equals labor demand.

In the following, we describe how we calibrated the exogenous, aggregate productivity

process. Following the RBC literature, we assume that the level of aggregate productivity

can be well approximated by an autoregressive process. We use Fernald’s (2014) quarterly

utilization-adjusted time series for TFP and detrend it with the HP filter (using a smoothing

parameter of 1,600). Then, we run a linear regression of this detrended series on its lagged

counterpart and calculate the standard deviation of the residuals. These residuals are then
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interpreted as shocks to aggregate productivity. We find a value of 0.009 at the quarterly

level. Converting this to the weekly level, we obtain σZ = 0.009√
12

≃ 0.0026. We normalize

the trend for aggregate productivity to unity and define a boom or bust as a one standard

deviation increase or decrease from the trend respectively. As a result, we obtain ZH = 1.0026

and ZL = 0.9974.67 Furthermore, we assume that the average duration of a boom or bust

is 35 months, which is approximately 140 weeks. This indicates a value of the transition

probability ϑ = 1− 1
140

≃ 0.99286.

In terms of computation, it is conventional to adopt a Krusell-Smith procedure for exten-

sions with aggregate shocks; see Vavra (2014) for a pricing application. Under this procedure,

agents use a forecasting rule that contains first (and possibly higher-order) moments of the

aggregate price indices P1t and P2t rather than whole distributions. When we computed this

extension, firms’ pricing policies are based on the stationary price indexes for two reasons.

First, this procedure approximates pricing policy functions in a dynamic environment fairly

well. In fact, several papers argue that aggregate shocks do not have a large impact in terms

of non-neutrality in models without active learning (see, for example, Section 6 in Golosov

and Lucas, 2007; page 1178 in Midrigan, 2011; pages 992 – 993 in Nakamura and Steinsson,

2009). Specifically, Alvarez and Lippi (2014, page 7 of Technical Appendix) show that the

impact of aggregate shocks on the aggregate price level impulse response can be well approx-

imated by imposing steady-state pricing policy functions (rather than solving for the exact

solution). Numerically, it can be shown that for small shocks this is also true in our model.

Second, a full-blown procedure in the spirit of Krusell and Smith Jr. (1998) would increase a

firm’s number of state variables significantly. This is because firms need to conjecture law of

motions for the two aggregate price indexes. Even in the simplest computational application

(when these law of motions only contain first moments), this would imply that firms have 5

state variables to keep track of. Higher-order approximations would increase it by even more

which might render the computational procedure infeasible. In Online Appendix F, we do

lay out the details on how such a model could be solved.

Furthermore, there are intuitive arguments why the previous logic on the irrelevance of

aggregate shocks for monetary non-neutrality also applies in our framework. For instance, we

can allow for nominal income to follow a random walk with drift in logs as in Vavra (2014).

This is a convenient example since shocks to nominal income are isomorphic to, for example,

aggregate productivity shocks. Note that we need to keep track of two aggregate states

(one for each aggregate price index) and an updating rule that possibly requires higher-order

moments to be sufficiently precise. However, nominal spending St (or st in logs) does not

67Vavra (2014) performs a similar exercise with real output per hours worked and finds a standard deviation
for aggregate productivity shocks of 0.006 at the monthly level. This means a value of σZ = 0.006√

4
≃ 0.003

which is similar to what we find above.
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appear in a firm’s posterior belief functions, i.e. b1(λ, p, ε) and b2(λ, p, ε). In fact, we have:

bi(λ, p, ε) =

(
1 +

1− λ

λ
exp

(
1
2
(−1)1(i=2)

[(
ε

σε

)2

−
(
p · ∆σ

σε
− ∆µ

σε
+

ε

σε

)2
]))−1

Recall that the key component behind the active learning mechanism is that a firm can

affect its posterior beliefs with its prices. As shown in the above however, these beliefs are

independent of St. As a result, there are no first-order effects of St on firms’ pricing policies

under active learning.

C.4 Bayesian Learning with a Continuum of Types

Our baseline framework in Section 3 features the simplest form of active learning with firms

varying their price as a control. Even though a firm is only uncertain about its demand

elasticity and its type can only be high or low, our menu cost model with active learning is

already consistent with the life cycle patterns that we showed in Section 2. Nevertheless, we

show that the key patterns and incentives for active learning are preserved when we use a

more elaborate form of learning.

Consider a monopolistically competitive producer with constant marginal costs c who is

faced with a linear demand curve of the following form:

q = α− σp+ ε

where the demand shock satisfies ε ∼ N(0, σ2
ε). There are two key differences in this frame-

work compared to the baseline. First, the firm faces uncertainty about the intercept α and

the slope σ of its demand curve. Second, the pair (α, σ) is now part of a continuous parameter

space. A firm’s prior belief is thus specified by a probability density function on (α, σ) over

R2. This is denoted by f(α, σ|θ,Q) where Q denotes its information set that consists of the

history of previous realized sales. θ parameterizes the distribution f . We specify the firm’s

initial prior over (α, σ) to be a multivariate normal distribution that is parameterized by the

mean vector (a, s)′ and variance-covariance matrix Σ. The latter is symmetric and satisfies:

Σ =

(
va vas

vas vs

)

Therefore, we have θ = (a, s, vec(Σ)′)′ = (a, s, va, vas, vs)
′.

Given a prior distribution f(α, σ|θt,Qt−1) at time t where Qt−1 = {q1, q2, . . . , qt−1) and af-

ter observing a realized sales value of qt, a firm will update its prior to a posterior distribution
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according to Bayes’ rule:

f(α, σ|θt+1,Qt) =
f(qt|α, σ, θt,Qt−1) · f(α, σ|θt,Qt−1)

f(qt|θt,Qt−1)

∝ f(qt|α, σ, θt,Qt−1) · f(α, σ|θt,Qt−1)

The family of Gaussian distributions is conjugate to itself with respect to a Gaussian likeli-

hood function, so this means that the posterior function must be of the multivariate normal

form as well. A standard application of the Kalman filter shows that:

(
a

s

)
t+1

=

(
a

s

)
t

+
ΣtXt

X ′
tΣtXt + σ2

ε

(
qt −X ′

t

(
a

s

)
t

)
(K1)

Σt+1 = Σt −
ΣtXtX

′
tΣt

X ′
tΣtXt + σ2

ε

(K2)

where Xt = (1,−pt)′. A more direct derivation can be found in Zellner (1971). The function

that changes the parameters from the prior distribution into their posterior counterparts, as

a function of observed sales and a chosen price, is denoted by B : Θ× P × R+ → Θ. Thus,

the above system of equations can be compactly written as θt+1 = B(θt, p, q). The ex ante

expected profits are defined as:

Π(p; θ) =

∫
ε∈R

∫
α,σ∈R2

(p− c)(α− σp+ ε)f(α, σ|θ,Q−1)q(ε;σ
2
ε)d(α, σ)dε

with q(·;σ2
ε) being a normal distribution with a mean of zero and a variance of σ2

ε . Then, a

firm’s Bellman equation can be written as:

V (θ) = max
p∈P

{
Π(p; θ) + β

∫
ε∈R

∫
α,σ∈R2

V (B(θ, p, α− σp+ ε)) f(α, σ|θ,Q−1)q(ε;σ
2
ε)d(α, σ)dε

}
Under this setup, a firm chooses its optimal price by trading off two forces. To maximize

its current profits, a firm chooses a price that maximizes myopic profits Π(p; θ). For a given

prior θ = (a, s, vec(Σ)′)′, we can derive that the optimal myopic price equals:

pmy(θ) = argmax
p∈P

Π(p; θ)

=
a+ sc

2s
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However, a firm’s price will affect its sales. The observed amount of sales in the future

serves as an useful signal for the firm to update its prior beliefs. A firm internalizes this

signal and thus needs to take into account how its price will affect its posterior beliefs. This

consideration is also known as the trade-off between current control and estimation. More

importantly, these incentives do not necessarily align with each other. The reasoning is as

follows: For moderate beliefs, a firm prefers to choose a price that is not too extreme in

order to maximize the myopic profits.68 However, large deviations in a firm’s price are more

likely to result in large deviations in a firm’s future sales which in turn means that its signals

become more volatile and are thus more informative. In the end, a firm needs to strike a

balance between maximizing strictly concave myopic profits and a convex continuation value.

To show this balance, we work out a numerical two-period version of the above framework.

We denote θt = (at, st, va,t, vas,t, vs,t). There are only two periods, thus in the second and last

period, we must have:

V2(θ2) = max
p∈P

Π(p; θ2)

= max
p∈P

(p− c)(a2 − s2p)

= (pmy(θ2)− c) (a2 − s2p
my(θ2))

=
(a2 − s2c)(3a2 − s2c)

4s2

By backward induction, we obtain:

V1(θ1) = max
p∈P

(p− c)(a1 − s1p) + β

∫
ε∈R

∫
α,β∈R2

(a2 − s2c)(3a2 − s2c)

4s2
f(α, σ|θ1, q1)q(ε;σ2

ε)d(α, σ)dε

s.t. a2 = a1 +
(va,1 + vas,1p)(α− σp+ ε− a− sp)

va,1 + 2vas,1p+ vs,1p2 + σ2
ε

s2 = s1 +
(vas,1 + vs,1p)(α− σp+ ε− a− sp)

va,1 + 2vas,1p+ vs,1p2 + σ2
ε

In the following example, we initialize the prior through θ1 = (5,−1.2, 0.5,−0.1, 2)′ and

normalize σ2
ε = 1. The graph below reflects the reasoning we just described.

We only consider prices for which quantities are non-negative in expectation (with respect

to the demand shock ε and the prior distribution), thus we define P = [0, a1
s1
] in this example.

The blue, dashed myopic profits are concave as expected. If the firm ignores its incentives

for estimation (i.e., changing its price to affect its posterior beliefs), then it is optimal to set

68Further, this price must exist and is unique since the profit function is strictly concave in p for every pair
(α, σ).
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pmy(θ1) = 2.58. However, setting a more extreme price delivers a more informative signal in

the second period. This is reflected in the convex shape of the continuation value (depicted in

green). In the end, a rational firm balances the trade-off between control and estimation. As

a result, it maximizes the sum of myopic profits and its continuation value, which is depicted

in the red line. The maximum of this function is obtained at p∗(θ1) = 3.5. By definition, the

firm engages in active learning as pmy(θ1) ̸= p∗(θ1).

Figure C6: Numerical Example of the Two-Period Model: Continuum of Types

1.5 2.0 2.5 3.0 3.5 4.0
p

1

2

3

4

V(p)

Note: The figure shows the static profits (blue), the continuation value (green), and the total payoff (red) of the two-period

model with a continuum of types. The y-axis represents the total payoff whereas the x-axis displays the price.

Note that the mechanics of active learning in this example with a continuum of types is

identical to the two-period example we illustrated in Section 3.1. In the baseline setup, a

firm also faces the trade-off between current control and estimation through concave myopic

profits and a strictly convex continuation value. As a result, our results on the propagation

of nominal shocks in Section 5 should be robust to a more complicated version of active

learning.

In fact, the incentives for active learning are stronger under a setup with a continuum of

types. To understand this argument, we rely on the insights of Kiefer and Nyarko (1989).

They show that under a setup with a linear demand curve all limiting beliefs and policy pairs

(θ
′
, p) must satisfy a set of three properties that we outline below:

θ = B(θ, p, α− σp+ ε) (B1)

Π(p, θ) = max
p∈P

Π(p; θ) (B2)

E(α|θ − E(σ|θ)p = α− σp (B3)

Equation B1 is also known as belief invariance and follows directly from the definition of a
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limiting belief. In the limit (if one exist), beliefs converge to a constant vector that is defined

as the fixed point of the function B conditional on p. If beliefs do not change in the limit,

then there are no incentives to actively learn. As a result, the optimal policy must be the

myopic one conditional on the limiting beliefs θ as described in equation B2. Kiefer and

Nyarko (1989) refer to this policy as one-period optimization. Further, if prices are forever

held at p, then a firm will at least infer the true amount of sales associated at the price p.

Equation B3 is also known as the mean prediction property.

The solution (θ
′
, p) that satisfies B1, B2 and B3 contains the correct limit belief but is in

general not unique. Wieland (2000a) shows that any solution that contains incorrect limit

beliefs must satisfy the following three properties:

Perfect correlation. v2as
vavs

= 1.

Uncertainty. va, vs > 0.

Limit actions. p = −vas
vs

= − va
vas

.

As a result, there is a set of incorrect, confounding beliefs under the continuum of types

case. Recall from Section 3 that a firm does not learn anything under the confounding belief

and thus avoids setting prices that are equal to the confounding price. This is reflected

by the discontinuity in policy function under the extreme active learning regime. Under a

continuum of types, there are a multitude of such points. Thus, firms vary their prices more

due to active learning in this case.

Another advantage of restricting our attention to active learning in which there are only

two types, (µ1, σ1) and (µ2, σ2) with σ2 > σ1, is that equations B1, B2, and B3 can be

used to show that there exists only one limit belief that does not converge to the truth (i.e.

λ ̸∈ {0, 1}). This incorrect limit belief is equal to:

λ =
σ2∆σc− µ2(σ1 + σ2) + 2µ1σ2

∆σ(∆σc−∆µ)

where c denotes a firm’s marginal cost of production.

C.5 Age-Dependent Exit Rates

In our baseline framework, the exit rate is fixed at δ > 0, which applies for each product.

However, just like for firms (Caves, 1998), younger products are more likely to exit the mar-

ket. Our assumption of a constant exit rate that is independent of the product’s age could

potentially bias our results on the propagation of nominal shocks. This is because the com-

position of products is biased towards younger products that experience a higher frequency
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and absolute size of price adjustments. In this section, we show that the assumption of a

constant exit rate does not significantly bias the results generated by the baseline framework.

First, we show in the IRI Marketing data that product-level exit declines in age. Second,

we propose an extension of our baseline framework to incorporate this observation. Third,

we calibrate the extended framework and recalculate the real effects of a nominal shock.

In the first exercise, we compute the fraction of products that exit the market by age for

each year and product category. Then, for each age bin, we average across years and product

categories and plot these average exit rates by product age. The result can be found in the

figure below that shows that exit rates indeed slope downward with age.

Figure C7: Exit Probability by Age

Note: The graph plots the average exit probability of a UPC-store pair as a function of its age. We first compute the probability

of exit for each category in the IRI Marketing data set. We then aggregate across categories using equal weights. The y-axis

denotes the average exit probability in a given wee whereas the x-axis denotes the number of weeks the product has been

observed in the data since it entered the market.

An alternative way of showing this fact is by estimating the product hazard function. There

are multiple ways of doing this estimation. We allow for a high degree of flexibility in the

hazard rate by estimating it parametrically through the Weibull distribution. The hazard

function is then given by h(a) = λpap−1 where the scale parameter is denoted by λ. The

shape parameter p indicates whether the hazard rate varies with age. A value p < 1 means

that the exit rates decline with a product’s age whereas p = 1 and λ = δ corresponds to the

exponential hazard function that we assume in our baseline framework. Thus, the Weibull

distribution is flexible in that it allows for age-varying hazard rates. Another advantage

of the Weibull specification is that it is straightforward to calibrate. Let T be a random

variable that denotes the product’s duration, then the following equalities hold whenever
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T ∼ WEI(λ, p):

E(T ) = λ−1/pΓ
(
1 + p−1

)
V (T ) = λ−2/p

[
Γ(1 + 2/p)− Γ(1 + p−1)

]
where Γ(·) denotes the gamma function. The IRI data shows that the average amount of

weeks that a product lasts in the market is 81.25 weeks. Furthermore, its variance is given

by 8326.5. Then, we can form a system of two equations in the pair of unknowns (λ, p). Its

solution is given by λ̂ = 48.13 and p̂ = 0.8922 < 1. Note that our calibrated value for p is

not too far away from unity. This value for p implies that product exit rates do not depend

too strongly on age.

Note that the previous method relies on the structure of the Weibull distribution. Alter-

natively, we perform a non-parametric exercise. It is fairly difficult to obtain hazard functions

non-parametrically, but we can still infer whether product-level exit rates depend on age in

a non-parametric fashion. Recall that survival and hazard functions are related through the

following identity:

−log (S(a)) =

∫ a

0

h(τ)dτ

A concave, increasing cumulative hazard function then indicates that hazard rates decline

with the product’s age. This is useful as it is straightforward to obtain the survival function

non-parametrically through the Kaplan-Meier estimator Ŝ(a).

To capture age-dependent exit rates in our framework, we extend the baseline model of

Section 3 by assuming that product-level exit rates depend on age as follows:

δ(a) = δ0exp (−δ1a)

The parameters δ0 and δ1 can then be chosen accordingly to match our observations from the

above graph. This estimation can be done by running a linear regression of average exit rates

(in natural logs) on age. The estimated intercept and slope of this regression then correspond

to δ̂0 and δ̂1. We could also match the observed (cumulative) hazard rate function. In this

case, we would add the two parameters δ0 and δ1 to our calibration.
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ONLINE APPENDIX (NOT FOR PUBLICATION)

D Data

Figure D1: Distribution of Price Changes at Entry

Note: The graph plots each decile of the price change distribution. The y-axis is the log price change in that week whereas the

x-axis denotes the number of weeks since the product entered. The calculation uses approximately 5.8 million price changes and

2.5 million UPC-store pairs.

Figure D2: Age Dependence of Pricing Moments Across Categories

Note: The figure plots the coefficients (in percent) from OLS regressions. The independent variable is the age of the product and

the dependent variables are either the frequency of adjustment or the absolute size of price changes. Each regression specification

includes UPC-store fixed effects, time fixed effects, and cohort controls that are approximated by the local unemployment rate

in the city and month the product was launched. The size of each circle depicts a product category’s total spending as a share

of aggregate spending.
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Figure D3: Frequency and Absolute Value of Price Adjustments at Entry (Retailer Evidence)

(a) Frequency of Price Changes (age×vendor) (b) Absolute Size of Price Changes (age×vendor)

(c) Frequency of Price Changes - Private Label (d) Absolute Size of Price Changes - Private Label

Note: The graph plots the average weekly frequency of price adjustments (panel (a) and (c)) and the average absolute size of price

adjustments (panel (b) and (d)) of entering products. The y-axis denotes the probability (absolute size) of price adjustments

in a given week and the x-axis denotes the number of weeks the product has been observed in the data since entry. The graph

plots the coefficients for the age fixed effects of equation 1 where we use the regular price change indicator as the dependent

variable. Equation 1 is computed by controlling for UPC-store effects and the local unemployment rate to represent the cohort

fixed effects. Panel (a) and (b) control for age-vendor fixed effects. Panel (c) and (d) use only the sample of private label items.

The calculation uses approximately 130 million observations and 2.5 million UPC-store pairs. Standard errors are clustered at

the store level. The underlying source is the IRI Marketing data.
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Figure D4: Frequency and Size of Price Changes at Exit (Positive and Negative)
Panel A: Frequency Panel B: Absolute Size

Note: Panel A plots the frequency of regular price increases and decreases at exit. Panel B plots the size of regular price

increases and decreases at exit. The x-axis denotes the number of weeks a product has left in the market before exiting. The

graph plots the coefficients for the age fixed effects in the regression where we use the regular price change indicator and the log

size of price changes for price increases and decreases as dependent variables. The estimates control for store, UPC, time fixed

effects, and the local unemployment rate represents the cohort fixed effects. Panel A shows that the frequency of price changes

stays mostly constant for both regular price increases and decreases near exit. Panel B shows that the size of price changes in

both directions stay close to their average value during the last weeks of the product. The calculation uses approximately 5.8

million price changes and 2.5 million store-UPC pairs. Standard errors are clustered at the store level.

Figure D5: Frequency of Price Adjustment (Positive and Negative)

Note: The figure shows the probability of a price adjustment with respect to the mean for both price increases and decreases.

Wave 1 represents products that were launched during the first year after the product was introduced. Wave 2 represents the

same products when launched in different stores a year later. The results control for fixed effects at the store, time and product

level.

42



Figure D6: Size of Price Adjustments (Positive and Negative)

Note: The figure shows the size of price changes with respect to the mean for both price increases and decreases. Wave 1

represents products that were launched during the first year after the product was introduced. Wave 2 represents the same

products when launched in different stores a year later. The results control for fixed effects at the store, time and product level.

Figure D7: Fraction of Products Launched by Wave (City)

Note: The figure shows the fraction of products launched in each wave by MSA. Wave 1 represents products that were launched

during the first year after the product was introduced. Wave 2 represents the same products when launched in different stores

(located in different cities) a year later. The 45 degree line denotes whenever the same fraction of new products were launched

in wave 1 and wave 2 for a given city.
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Figure D8: Fraction of Products Launched by Wave (Retailer)

Note: The figure shows the fraction of new products launched in each wave by retailer. Wave 1 represents products that were

launched during the first year after the product was introduced. Wave 2 represents the same products when launched in different

stores (located in different cities) a year later. The 45 degree line denotes whenever the same fraction of new products were

launched in wave 1 and wave 2 for a given retailer. The size of each circle represents the size of the retailer measured in total

sales.

Figure D9: Newness Index by Category

Note: The figure shows the average of the Newness index for each product category. The index is computed following equation

8. The estimates in the figure are averages across stores and products using equal weights. The underlying source is the IRI

Marketing data.
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Figure D10: Price Spell Fixed Effects With and Without Controlling for Product Age

Note: We run a regression similar to specification 1 but consider only the age of a price spell (blue line). The graph plots

the coefficients for the age of price spell fixed effects using specification 1 where we use the regular price change indicator as

the dependent variable. Regression specification 1 with fixed effects for the age of price spells is computed by controlling for

UPC-store and time fixed effects while the local unemployment rate proxies for cohort fixed effects. The pink line plots the

coefficients for the age of price spell fixed effects whenever product age fixed effects are also included. Estimates are normalized

such that the last week of the specification without product age fixed effects (blue line) is equal to the unconditional frequency

of price adjustment for week 49.

E Derivations

E.1 Convexity of Continuation Value

Proof. Recall that the value function V (λ) is given by:

V (λ) = max
p∈P

λΠ(p;σ1) + (1− λ)Π(p;σ2)

By assumption, we have that Π(·;σ) is continuous, then we know that λΠ(p;σ1) + (1 −
λ)Π(p;σ2) is continuous in (λ, p) on [0, 1]×P . The set P = [P ∗

2 , P
∗
1 ] is furthermore compact.

Then, the Theorem of the Maximum states that V (·) is continuous on [0, 1].

Convexity in λ follows almost directly. First, define the object:

pM(λ) = argmax
p∈P

λΠ(p;σ1) + (1− λ)Π(p;σ2)
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Fix an arbitrary α ∈ [0, 1], λ, λ′ ∈ [0, 1], then we get:

V (αλ+ (1− α)λ′) = α
(
λΠ(pM(αλ+ (1− α)λ′);σ1) + (1− λ)Π(pM(αλ+ (1− α)λ′);σ2)

)
+ (1− α)

(
λ′Π(pM(αλ+ (1− α)λ′);σ1) + (1− λ′)Π(pM(αλ+ (1− α)λ′);σ2)

)
≤ αV (λ) + (1− α)V (λ′)

which is the definition of V (·) being convex. □

E.2 Uninformative Policy at Confounding Price p̂

Proof. Note that this proposition holds for the infinite period model as well. Suppose it is

optimal for the firm to choose p∗(λ̂) = p̂ ∈ int(P) for some λ̂ ∈ (0, 1). We show that a firm’s

continuation value is equal to zero whenever it chooses its price equal to p̂. Given some price

p and prior belief λ0, a firm’s continuation value is defined as:

βV(P ;λ0) ≡ β

(
λ0Eε [V (b1(λ0, log(p), ε))] + (1− λ0)Eε [V (b2(λ0, log(p), ε))]

)
Recall that a firm faces a trade-off between maximizing current period expected profits and

the value of information (through sharpening its posterior belief). The latter is captured by

V(p;λ0). As a result, a firm’s marginal benefits are defined as:

λ0Eε
[
V ′(b1(λ0, log(p), ε))

∂b1(λ0, log(p), ε)

∂log(p)

1

p

]
+(1− λ0)Eε

[
V ′(b2(λ0, log(p), ε))

∂b2(λ0, log(p), ε)

∂log(p)

1

p

]
Therefore, a firm’s posterior belief at the confounding price p̂ equals its prior belief, that is,

we have:

b1(λ0, log(p), ε)

∣∣∣∣
p=p̂

= b2(λ0, log(p), ε)

∣∣∣∣
p=p̂

=

(
1 +

1− λ0
λ0

)−1

= λ0

for all ε ∈ R. Also, the expected change in a firm’s posterior belief at p = p̂ is exactly equal
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to zero as:

Eε

∂bi(λ0, log(p), ε)
∂log(p)

∣∣∣∣∣
p=p̂

 = Eε
[
∆σ
σ2
ε
(1− λ0)λ0(−1)1(i=2)ε

]
= 0

for i ∈ {1, 2} as Eε[ε] = 0. Therefore, a firm’s expected marginal benefit at p = p̂ reduces to:

V ′(λ0)p̂
−1Eε

λ0∂b1(λ0, log(p), ε)
∂log(p)

∣∣∣∣∣
p=p̂

+ (1− λ0)
∂b2(λ0, log(p), ε)

∂log(p)

∣∣∣∣∣
p=p̂

 = 0

If it is optimal for a firm to choose p∗(λ̂) = p̂, then it must be equal to pM(λ̂) as there are

no gains from active learning. By construction, we have pM(0) = p∗2 and pM(1) = p∗1. Also,

it is straightforward to show that pM(·) is strictly increasing and continuous. Therefore,

the confounding price p̂ ∈ P is guaranteed to exist. Furthermore, the Intermediate Value

Theorem implies that there must be some λ̂ such that pM(λ̂) = p̂.

By construction, we have p̂ ≡ ∆µ
∆σ

. Since pM(·) is strictly increasing, we also must have that

the confounding belief is strictly increasing (decreasing) in ∆µ (∆σ). □

E.3 Monotonicity of Myopic Policy Function

Proof. The Theorem of the Maximum states that pM(λ) is a non-empty, compact-valued,

and upper hemi-continuous correspondence. However, the objective function is a weighted

average of strictly concave functions, thus it is strictly concave itself. As a result, pM(λ)

must be single-valued. This value means that pM(λ) is not only upper hemi-continuous but

continuous.

Appendix A.1 of Bachmann and Moscarini (2012) shows that dpM (λ)
dλ

> 0 if and only if

pM(λ) > pM(0) = p∗2 for λ > 0. By construction, this holds for λ = 1 as p∗1 > p∗2 as σ2 > σ1.

Thus, the inequality must hold as well for large enough λ through continuity of pM(·).

Suppose by way of contradiction that for some λ′ > 0, we have pM(λ′) = pM(0) instead.

Then for some small ∆ > 0, we must either have pM(λ′ −∆) > pM(0), pM(λ′ −∆) = pM(0)

or pM(λ′ − ∆) < pM(0). The first case indicates that dpM (λ)
dλ

< 0, which contradicts the

equivalence from Bachmann and Moscarini (2012). The second case states that pM(λ′−∆) =

pM(0) over an open interval of small strictly positive values of ∆. However, this value cannot
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be true as the expected profit function is strictly concave. Whenever pM(λ′ −∆) < pM(0),

then we must have dpM (λ)
dλ

∣∣
λ=ℓ

< 0 for all ℓ ∈ (0, λ′). But, this means that for all ℓ ∈ (0, λ′),

we have pM(ℓ) < pM(0) but we assumed that lim
λ↓0

pM(λ) = pM(λ′). Therefore, pM(λ) must

display a discontinuity at λ = 0. This is the desired contradiction as we showed that pM(·)
is continuous. Thus, pM(λ′) > pM(0) must hold for all λ′ > 0 and dpM (λ)

dλ
> 0 follows. □

E.4 Interior Solution of Active Learning Policy

Lemma 1. The marginal expected change in a firm’s posterior belief is bounded by its

absolute value, that is,∣∣∣∣Eε [∂bi(λ0, log(p), ε)∂log(p)

∣∣∣∣ ε ∈ F
] ∣∣∣∣ ≤ ∆σ

σ2
ε

(∫
ε∈F

|log(p)∆σ −∆µ+ ε|dF (ε)
)

where the sign of log(p)∆σ −∆µ+ ε is constant for all ε ∈ F ⊆ R.

Proof. Let x ≡ log(p)∆σ − ∆µ and ε is contained in some set F ⊆ R. By construction of

the ex post belief function bi(λ, log(p), ε), we obtain:

∣∣∣∣Eε [∂bi(λ0, log(p), ε)∂log(p)

∣∣∣∣ ε ∈ F
] ∣∣∣∣ = ∣∣∣∣ ∫

ε∈F

exp
(

(ε+x)2+ε2

2σ2
ε

)
∆σ(x+ ε)(1− λ0)λ0(

exp
(
ε2

2σ2
ε

)
(1− λ0)σε + exp

(
(x+ε)2

2σ2
ε

)
λ0σε

)2dF (ε)∣∣∣∣
=

∆σ

σ2
ε

∣∣∣∣∣
∫
ε∈F

 exp
(

(ε+x)2

2σ2
ε

)
λ0

exp
(
ε2

2σ2
ε

)
(1− λ0) + exp

(
(ε+x)2

2σ2
ε

)
λ0

×

 exp
(
ε2

2σ2
ε

)
(1− λ0)

exp
(
ε2

2σ2
ε

)
(1− λ0) + exp

(
(ε+x)2

2σ2
ε

)
λ0

 (x+ ε)dF (ε)

∣∣∣∣∣
≤ ∆σ

σ2
ε

(∫
ε∈F

|x+ ε|dF (ε)
)

where the last inequality follows as the bracketed terms in the second equality are bounded

by [0, 1] and the sign of x+ ε remains constant on the set F by assumption. This is exactly

what we wanted to show. □

Proposition 1. Whenever V ′(1) is small enough, then the firm’s active learning policy

has an interior solution, that is, p∗(λ0) ∈ (p∗2, p
∗
1) for all λ0 ∈ (0, 1).

Proof. We show the case for λ0 ≥ 1
2
. The case for λ0 <

1
2
follows a very similar process. We

derive sufficient conditions such that p∗(λ0) ∈ int(P) for all λ0 ∈ (0, 1). This is equivalent to
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finding sufficient conditions such that a firm’s expected marginal benefits strictly dominate

its cost counterpart for p = p∗2 and vice versa for p = p∗1.

By construction of the ex post belief functions bi(λ0, log(p), ε), we can derive the following

equality:

∂b2(λ0, log(p), ε)

∂log(p)
= −∂b1(λ0, log(p), ε)

∂log(p)
β̃(ε, λ0, x)

where the function β̃(·) is characterized by:

β̃(ε, λ0, x) =

λ0exp
(

(x+ε)2

2σ2
ε

)
+ (1− λ0)exp

(
ε2

2σ2
ε

)
(1− λ0)exp

(
(x+ε)2

2σ2
ε

)
+ λ0exp

(
ε2

2σ2
ε

)
2

We show that β̃′(·, λ0, x) is strictly increasing if and only if x(2λ0 − 1) is strictly positive.

Furthermore, it satisfies limε→+∞ β̃(ε, λ0, x) =
(

1−λ0
λ0

)2
and limε→−∞ β̃(ε, λ0, x) =

(
λ0

1−λ0

)2
.

Let xmin = log(p∗2)∆σ−∆µ < 0 and xmax = log(p∗1)∆σ−∆µ > 0, then we need to show that:

ηλ0Π
′
1(p

∗
2) +

β

p∗2
Eε
[(
λ0V

′(b1(λ0, log(p
∗
2), ε))−

(1− λ0)V
′(b2(λ0, log(p

∗
2), ε))β̃(ε, λ0, xmin)

)
∂b1(λ0, log(p), ε)

∂log(p)

∣∣∣∣
p=p∗2

]
> 0

(A1)

(1− η)(1− λ0)Π
′
2(p

∗
1) +

β

p∗1
Eε
[(
λ0V

′(b1(λ0, log(p
∗
1), ε))−

(1− λ0)V
′(b2(λ0, log(p

∗
1), ε))β̃(ε, λ0, xmax)

)
∂b1(λ0, log(p), ε)

∂log(p)

∣∣∣∣
p=p∗1

]
< 0 (A2)

that are the first-order conditions with respect to p in period 1 evaluate at p = p∗2 and

p = p∗1. We start by finding a sufficient condition for the first inequality A1. To do this, we

define the function g(ε, λ0) = λ0V
′
2(b1(λ0, p

∗
2, ε)) − (1 − λ0)V

′
2(b2(λ0, p

∗
2, ε))β̃(ε, λ0, xmin). For

x = xmin < 0, and we show that g(·, λ0) is monotonically decreasing. Furthermore, it satisfies

g(−x, 1
2
) < 0 and g(−x, 1) > 0.

Whenever λ0 is relatively close to
1
2
, we show that ∃ε(λ0) < −xmin such that g(ε, λ0) > 0 for all
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ε < ε(λ0) as g(−xmin,
1
2
) < 0.69 Furthermore, we derive that ∂b1(λ0,log(p),ε)

∂log(p)

∣∣∣∣
p=p∗2

> 0 if and only

if ε > −xmin. Now, denote E1 ≡ (−∞, ε(λ0)), E2 ≡ (ε(λ0),−xmin) and E3 ≡ (−xmin,+∞).

By construction, it must be that E1 ∪ E2 ∪ E3 = R.

The observations above show that:

g(ε, λ0)
∂b1(λ0, log(p), ε)

∂log(p)

∣∣∣∣
p=p∗2

> 0

for ε ∈ E2. Thus, it is sufficient to show:

ηλ0Π
′
1(p

∗
2) +

β

p∗2
Eε
[
g(ε, λ0)

∂b1(λ0, log(p), ε)

∂log(p)

∣∣∣∣
p=p∗2

∣∣∣∣∣ε ∈ E1 ∪ E3

]
> 0

Let ξ2 ≡ maxε∈E3 β̃(ε) = β̃(−xmin), then observe the following strain of inequalities:

ηλ0Π
′
1(p

∗
2) +

β
p∗2
V ′(1)∆σ

σ2
ε

(
xmin + Eε [ε|ε ≤ ε(λ0)]− ξ2Eε [ε|ε ≥ −xmin]

)
<

ηλ0Π
′
1(p

∗
2) +

β
p∗2
V ′(1)∆σ

σ2
ε

(
xminF (ε(λ0)) + Eε [ε|ε ≤ ε(λ0)]

−ξ2xmin (1− F (−xmin))− ξ2Eε [ε|ε ≥ −xmin]
)
=

ηλ0Π
′
1(p

∗
2) +

β
p∗2
V ′(1)∆σ

σ2
ε
(Eε [x+ ε|ε ∈ E1]− ξ2Eε [x+ ε|ε ∈ E3]) ≤

ηλ0Π
′
1(p

∗
2) +

β
p∗2
V ′(1)

(
Eε

[
∂b1(λ0,log(p),ε)

∂log(p)

∣∣∣∣
p=p∗2

∣∣∣∣ ε ∈ E1

]

−ξ2Eε

[
∂b1(λ0,log(p),ε)

∂log(p)

∣∣∣∣
P=P ∗

2

∣∣∣∣ ε ∈ E3

])
<

ηλ0Π
′
1(p

∗
2) +

β

p∗2
Eε
[
g(ε, λ0)

∂b1(λ0, log(p), ε)

∂log(p)

∣∣∣∣
p=p∗2

∣∣∣∣∣ε ∈ E1 ∪ E3

]

where the weak inequality follows from lemma 2 and the last strict inequality from the fact

that V ′(1) > V ′(λ′) for any λ′ < 1. This means that we are done whenever we can show:

ηλ0Π
′
1(p

∗
2) +

β
p∗2
V ′(1)∆σ

σ2
ε

(
xmin + Eε [ε|ε ≤ ε(λ0)]− Eε [ε|ε ≥ −xmin]

)
> 0

Recall that ε ∼ N (0, σ2
ε). Therefore, we can use standard truncation formulas for our

69Whenever λ0 is close to one, then the steps of the proof are similar. Instead, we have that ε(λ0) is greater
than −xmin though.

50



conditional expectations. These formulas give:

Eε [ε|ε ≤ ε(λ0)]− ξ2Eε [ε|ε ≥ −xmin] = −
φ
(
ε(λ0)
σε

)
Φ
(
ε(λ0)
σε

) − ξ2
φ
(

−xmin

σε

)
1− Φ

(
−xmin

σε

)
> −φ(0)

 1

Φ
(
ε(λ0)
σε

) +
ξ2

1− Φ
(

−xmin

σε

)


> −φ(0)

 1 + ξ2

1− Φ
(

−xmin

σε

)


Then, we can frame our first sufficient condition as:

ηλ0Π
′
1(p

∗
2) +

β
p∗2
V ′(1)∆σ

σ2
ε

[
xmin − φ(0) 1+ξ2

1−Φ
(−x
σε

)
]

(B1)

In a similar fashion, we derive a sufficient condition forA2. Define h(ε, λ0) = λ0V
′(b1(λ0, p

∗
1, ε))−

(1− λ0)V
′(b2(λ0, p

∗
1, ε))β̃(ε, λ0, xmax), then we have h(·, λ0) that is monotonically increasing.

Once again, we can show that ∃ε(λ0) > 0 such that h(ε, λ0) if and only if ε > ε(λ0). By

straightforward algebra, we can deduce that ∂b1(λ0,log(p),ε)
∂log(p)

∣∣∣∣
P=P ∗

1

> 0 if and only if ε > −xmax.

Then, denote E1 ≡ (−∞,−xmax), E2 ≡ (−xmax, ε(λ0)) and E3 ≡ (ε(λ0),+∞) which satisfies

E1 ∪ E2 ∪ E3 = R.

With similar reasoning as before, the following condition is sufficient for A2 to hold:

(1− η)(1− λ0)Π
′
2(p

∗
1) +

β

p∗1
Eε
[(
λ0V

′(b1(λ0, log(p
∗
1), ε))−

(1− λ0)V
′(b2(λ0, log(p

∗
1), ε))β̃(ε, λ0, xmax)

)
∂b1(λ0, log(p), ε)

∂log(p)

∣∣∣∣
p=p∗1

∣∣∣∣∣ε ∈ E1 ∪ E3

]
> 0

Let ξ1 ≡ maxε∈E1 β̃(ε) =
(

λ0
1−λ0

)2
, then we derive a similar chain of inequalities as before:

(1− η)(1− λ0)Π
′
2(p

∗
1) +

β
p∗1
V ′(1)∆σ

σ2
ε

(
ξ1xmax + ξ1Eε [ε|ε ≥ ε(λ0)]− Eε [ε|ε ≤ −xmax]

)
>

(1− η)(1− λ0)Π
′
2(p

∗
1) +

β
p∗1
V ′(1)∆σ

σ2
ε

(
ξ1xmax [1− F (ε(λ0))] + ξ1Eε [ε|ε ≥ ε(λ0)]

−xmaxF (−xmax)− Eε [ε|ε ≤ −xmax]
)

(1− η)(1− λ0)Π
′
2(p

∗
1) +

β
p∗1
V ′(1)∆σ

σ2
ε
(ξ1Eε [xmax + ε|ε ∈ E3]− Eε [xmax + ε|ε ∈ E1]) ≥
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(1− η)(1− λ0)Π
′
2(p

∗
1) +

β
p∗1
V ′(1)

(
ξ1Eε

[
∂b1(λ0,log(p),ε)

∂log(p)

∣∣∣∣
p=p∗1

∣∣∣∣ ε ∈ E3

]

−Eε

[
∂b1(λ0,log(p),ε)

∂log(p)

∣∣∣∣
p=p∗1

∣∣∣∣ ε ∈ E1

])
>

(1− η)(1− λ0)Π
′
2(p

∗
1) +

β

P ∗
1

Eε
[
h(ε, λ0)

∂b1(λ0, log(p), ε)

∂log(p)

∣∣∣∣
p=p∗1

∣∣∣∣∣ε ∈ E1 ∪ E3

]

where the weak inequality follows from lemma 2 and the last strict inequality from the fact

that V ′(1) > V ′(λ′) for any λ′ < 1. This means that we are done whenever we can show:

(1− η)(1− λ0)Π
′
2(p

∗
1) +

β
p∗1
V ′(1)∆σ

σ2
ε

(
ξ1xmax + ξ1Eε [ε|ε ≥ ε(λ0)]− Eε [ε|ε ≤ −xmax]

)
< 0

Using the previous finding on expectations of truncated standard normal random variables,

the latter inequality is satisfied whenever the following condition holds:

(1− η)(1− λ0)Π
′
2(p

∗
1) +

β
p∗1
V ′(1)∆σ

σ2
ε

(
ξ1xmax + φ(0) 1+ξ1

Φ
(−xmax

σε

)
)
< 0 (B2)

Whenever we define x̃min and x̃max as:

x̃min ≡ log(p∗2)∆σ −∆µ− φ(0) 1+ξ2

1−Φ

(
−

log(p∗2)∆σ−∆µ

σε

) < 0,

x̃max ≡ ξ1
(
log(p∗1)∆σ −∆µ

)
+ φ(0) 1+ξ1

Φ

(
−

log(p∗1)∆σ−∆µ

σε

) > 0.

then, it is clear that B1 and B2 are satisfied whenever V ′(1) is bounded from above. More

precisely, we get:

V ′(1) < V ≡ σ2
ε

β∆σ
min

{
ηλ0Π

′
1(p

∗
2)

−x̃min

,
(1− η)(1− λ0) (−Π′

2(p
∗
1))

x̃max

}
. (B)

Thus, we have shown B =⇒ (B1 and B2) =⇒ (A1 and A2). However, we concluded in the

beginning of the proposition that p∗(λ0) ∈ int(P) whenever A1 and A2 hold. This is exactly

what we wanted to show. □

E.5 Active Learning

The gains from active learning are strongly related to the convexity of V(·;λ0). Incentives

for active learning are also determined by a firm’s prior belief, the signal-to-noise ratio, and

the discount factor. A firm’s prior belief determines how certain it is about its type. A firm
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has less incentive to engage in active learning as its belief moves closer to zero or one. The

signal-to-noise ratio summarizes the sensitivity of a firm’s posterior beliefs to price deviations

relative to the confounding price. Thus, firms that face extremely large levels of noise will

basically never receive an informative signal through their sales. As a result, they have no

incentives to actively learn as shown in figure E11. Lastly, the discount factor indicates how

much a firm values more information in future periods. The convexity of V(·;λ0) determines

the shape of the total payoff function. In our previous numerical example, the total payoff

function was double-peaked because V(·;λ0) was sufficiently convex but this might not always

be the case.

Figure E11: Active Learning: Deviations from the Myopic Policy

Note: The figure shows the absolute deviations between the active learning policy and the myopic policy as predicted in the

two-period model. The y-axis denotes the absolute difference between the two policies and the x-axis displays the standard

deviation of the log demand shock σε.

The shape of the total payoff function determines the active learning regime.70 In our setup,

there are two qualitatively different regimes which are determined by the shape of V(p;λ0):
extreme and moderate active learning. Under extreme active learning, the total payoff func-

tion is double-peaked. As a result, the firm never chooses to price at the confounding price,

and p∗(λ) displays a discontinuity at λ = λ̂. Since the value of information is minimized at

the confounding belief λ̂, the firm has the most incentive to change its price at this specific

belief and deviates in a discontinuous fashion. But, under moderate active learning, the total

payoff function is single-peaked and the policy function p∗(·) is continuous between p∗2 and

70The terminology is borrowed from Keller and Rady (1999) who show that different active learning regimes
could arise in a problem of a seller choosing quantities subject to a randomly changing state.
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p∗1.

Figure E12 depicts the two active learning regimes. The thin gray line shows the myopic

policy function pM(λ) that is monotonically increasing in λ whereas the purple line is the

policy function p∗(λ) under active learning. The figure shows that pM(λ) and p∗(λ) are

bounded from below and above by p∗2 and p
∗
1 as shown before. Under extreme active learning,

the policy function shows a discontinuity at the confounding belief. The firm actively learns

mostly near λ̂ as it tries to keep the informativeness of its observed sales as high as possible.

It can only do this to a limited extend as otherwise the firm would lose too many static

profits. With moderate active learning, the myopic policy coincides with the active learning

policy at the confounding price p̂. Once the firm updates its posterior closer to the boundaries

(i.e., λ ∈ {0, 1}), the incentives for active learning decline again as the firm’s information

set converges to the complete information case. In this case, the myopic and active learning

policies coincide at λ ∈ {0, 1}. Hence, the firm would never pay the opportunity costs (i.e.,

give up static profits) through active learning whenever its beliefs reach either zero or one.

Figure E12: Active Learning Regimes

(a) Extreme Active Learning. (b) Moderate Active Learning.

Note: Panel (a) shows the extreme active learning regime and panel (b) its moderate counterpart. The gray line depicts the

myopic policy pM (λ) whereas the purple lines depict the policy under active learning p∗(λ). The dotted lines at the top and

bottom of the panels indicate the optimal prices p∗1 and p∗2 under complete information.

Menu costs. In the two-period model with menu costs, the firm must decide to either

adjust its price or maintain it at the same level. Under perfect information, the firm follows

a standard (s, S) policy and the region of inaction depends on the curvature of the profit

functions and the menu cost. But, under demand uncertainty, the width of the inaction band

also depends on the firm’s prior belief and it is larger close to the confounding belief because

the variance in changes of its prior belief changes is higher. This variance induces a high

option value of waiting that is reflected in the larger width of inaction (figure E13). This
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inaction, in turn, reduces the adjustment frequency. On the other hand, higher uncertainty

pushes the firm to adjust for a given region of inaction.

Figure E13: Inaction Region: Two-Period Model with Menu Costs

Note: The figure shows the region of inaction for the two-period model with menu costs. The y-axis denotes the previous price

and the x-axis denotes the prior belief. The region inside the purple lines is the region of inaction, and the dotted red line

indicates the confounding belief.

F Computational Details

F.1 Aggregate Shocks

The model is identical to the quantitative framework of Section 3, but nominal aggregate

spending is specified as follows instead:

log(St+1) = log(St) + π̃ + σsζ
s
t+1 where ζst+1 ∼ N(0, 1)

In order to bound the state space of the problem, all nominal variables are normalized by

current nominal spending in the economy. The firm’s idiosyncratic states are given by its

previous nominal price Pt−1, its current level of productivity zt and its current belief λt. The

aggregate state of the economy can be summarized by the current level of nominal spending

St and the joint distribution of idiosyncratic states. Since the evolution of aggregate state

variables depends on this joint distribution, the state space of the problem is thus infinite

dimensional. Following Krusell and Smith Jr. (1998) and its application to Ss models in

Midrigan (2011), we conjecture that the decomposition of changes in St into changes in P1t
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and P2t is given by the following forecasting rules:

log

(
P1t

St

)
= γ10 + γ11θ1t (14)

log

(
P2t

St

)
= γ20 + γ21θ2t (15)

where θ1t = log
(
P1t−1

St

)
and θ2t = log

(
P2t−1

St

)
. Let the vector of aggregate states be denoted

as A = (θ1, θ2). Given the conjectured law of motions, the firm’s problem can be written

recursively as:

V
(
λ, log z, log

p−1

S
;A
)
= max

{
V A(λ, log z;A), V N

(
λ, log z, log

p−1

S
;A
)}

where the value functions for adjustment and non-adjustment are defined as:

V A(λ, log z;A) = max
p≥0

Π
(
λ, z,

p

S
;A
)
− ψ ωS

P

+ βλE
S
P
S′

P ′

V
(
b1

(
λ, log

( p
S

)
− (π̃ + ζs), ϵ,A′

)
, log z′, log(

p

S
)− (π̃ + ζs);A′

)
+ β(1− λ)E

S
P
S′

P ′

V
(
b2

(
λ, log(

p

S
)− (π̃ + ζs), ϵ;A′

)
, log z′, log(

p

S
)− (π̃ + ζs);A′

)
V N(λ, log z, log

p−1

S
;A) = Π

(
λ, z,

p

S
;A
)

+ βλE
S
P
S′

P ′

V
(
b1

(
λ, log

(p−1

S
)− (π̃ + ζs

)
, ϵ;A′

)
, log z′, log(

p−1

S
)− (π̃ + ζs);A′

)
+ β(1− λ)E

S
P
S′

P ′

V
(
b2

(
λ, log(

p−1

S
)− (π̃ + ζs), ϵ;A′

)
, log z′, log(

p−1

S
)− (π̃ + ζs);A′

)

with the expected profit function being equal to:

Π
(
λ, z,

p

S
;A
)
=
( p/S
P/S

− ω

z(P/S)

) [
λη (p/S)−σ1

(P1/S)1−σ1
+ (1− λ)(1− η) (p/S)−σ2

(P2/S)1−σ2

]
Computational procedure. By construction, the aggregate price index satisfies:

Pt
St

=

(
P1t

St

)η(
P2t

St

)1−η
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Then, we have:

Pt
St

= e(γ10+γ11θ1)η+(γ20+γ21θ2)(1−η)

As a result, current real profits can be rewritten as:

Π
(
λ, z,

p

S
;A
)
= e−[(γ10+γ11θ1)η+(γ20+γ21θ2)(1−η)] × (

p

S
− ω

z
)

× [λη (p/S)−σ1

e(γ10+γ11θ1)(1−σ1)
+ (1− λ)(1− η) (p/S)−σ2

e(γ20+γ21θ2)(1−σ2)
]

The stochastic discount factor becomes:

Q =
e−[(γ10+γ11θ1)η+(γ20+γ21θ2)(1−η)]

e−[(γ10+γ11θ′1)η+(γ20+γ21θ′2)(1−η)]

Using the fact that nominal spending S follows a random walk in logs, the law of motions

for (θ1, θ2) can be written as:

θ′1 = γ10 + γ11θ1 − (π̃ + ζs)

θ′2 = γ20 + γ21θ2 − (π̃ + ζs)

log
p′

S ′ = log
p

S
− (π̃ + ζs)

The Bayesian updating formula from the quantitative model in Section 3 can be rewritten

as:

bi(λ, p̃, ε;A) =

[
1 +

1− λ

λ

F ′(µ̃i − µ̃2 + (σ2 − σi)p̃+ ε)

F ′(µ̃i − µ̃1 + (σ1 − σi)p̃+ ε)

]−1

where we defined p̃ = log p
S
and µ̃i = (σi − 1)(pi − s) + log(ηi). The latter now satisfies:

µ̃i = (σi − 1)(γi0 + γi1θi) + log(ηi)

By assumption, prior beliefs are updated as follows:

λ′ = B(λ, p̃, q;A)

=
λf(q + σ1p̃− µ̃1)

λf(q + σ1p̃− µ̃1) + (1− λ)f(q + σ2p̃− µ̃2)

=

[
1 +

1− λ

λ

f(q + σ2p̃− (σ2 − 1)(γ20 + γ21θ2)− log(1− η))

f(q + σ1p̃− (σ1 − 1)(γ10 + γ11θ1)− log(η))

]−1
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Lastly, labor demand now becomes:

Ld =

[
η

(∫
1
z
[p∗(λ, z)/S]−σ1 dφ1(λ, z)∫

[p∗(λ, z)/S]1−σ1 dφ1(λ, z)

)
+ (1− η)

(∫
1
z
[p∗(λ, z)/S]−σ2 dφ2(λ, z)∫

[p∗(λ, z)/S]1−σ2 dφ2(λ, z)

)]
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